Skip to main content
Climate
Search

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
MIT

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
PostApril 6, 2021

The science and technology that can help save the ocean

Dawn Wright, oceanographer and chief scientist at Esri

More than 80% of the ocean floor remains unmapped, yet comprehensive ocean maps will be essential for stemming the problems of overfishing, habitat destruction, pollution, and biodiversity loss. It’s easy, and at this point cliché, to say “save our ocean,” but a data-driven map compels people to see why the ocean needs saving, where to start, and what needs to be done. “Seeing the ocean in its true depth and complexity is exactly what we need if we hope to reduce the risk of critically damaging or exhausting marine resources,” says Dawn Wright, oceanographer and chief scientist at Esri. 

Read the full story here: https://www.technologyreview.com/2021/03/29/1021374/the-science-and-technology-that-can-help-save-the-ocean/

by MIT Technology Review
Topics
Biodiversity
Climate Modeling
International Agreements
Oceans

Related Posts

PostJune 12, 2025

A Complete Picture of Sustainability

MIT Spectrum
Example of a modeling map.
PostJune 11, 2025

A vision for transportation resilience in the energy transition

MIT Center for Sustainability Science and Strategy
Rethinking resilience of low-carbon transportation
PostJune 5, 2025

How will U.S. land use change by 2050?

MIT Center for Sustainability Science and Strategy
How will U.S. land use change by 2050?
PostJune 4, 2025

Study helps pinpoint areas where microplastics will accumulate

MIT News
One key factor in determining where microparticles are likely to build up has to do with the presence of biofilms — thin, sticky biopolymer layers shed by microorganisms, which can accumulate on surfaces, including sandy riverbeds or seashores.

MIT Climate News in Your Inbox

 
 

MIT Groups Log In

Log In

Footer

  • About
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Contact
MIT Climate Project
MIT
Communicator Award Winner
Communicator Award Winner