Skip to main content
Climate
Search

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
MIT

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
PostNovember 15, 2019

Microbial cooperation at the micron scale impacts biodegradation

MIT research finds the emergence of cooperative cell clusters depends on cells encountering each other and aggregating on the surface of polysaccharide particles.

The carbon cycle, in which CO2 is incorporated into living organisms and later released back into the atmosphere through respiration, relies on the ability of bacteria and fungi to degrade complex organic materials such as polysaccharides. These materials represent large reservoirs of carbon and energy on the planet. By degrading them, microbes enable the recycling of this energy and carbon into the ecosystem. However, much like some of the human-designed synthetic materials, some polysaccharides can be highly recalcitrant to degradation.

Using a combination of computational models and experiments, MIT scientists have shown that, in order to degrade, recalcitrant polysaccharides bacteria “team up” by forming micrometer-scale cell clusters where cells facilitate each other’s growth. This study demonstrates how cooperation among microbes, often ignored in biogeochemical models, can have a significant impact on ecosystem-level processes. The work, published in the Proceedings of The National Academy of Science Oct. 30, shows that the emergence of these cooperative clusters is a stochastic process that depends on cells encountering each other and aggregating on the surface of polysaccharide particles.

“One of the implications of cooperation is that degradation rate can be determined by the time it takes for cells to find each other, and this can be very long if cell densities are low” says Otto X. Cordero, associate professor of civil and environmental engineering at MIT.

The research team showed that for some organisms, the critical cell densities required for degradation can be larger than their natural abundance in the environment, suggesting that the degradation of complex organic matter can be bacteria-limited in some cases. 

“The fundamental reason why cooperation emerges in these microorganisms is because the large molecules that make up complex materials need to be dissolved by secreted enzymes, outside cells” says Cordero.

The researchers showed that in an environment like the ocean, 99 percent of all carbon released outside cells is lost by diffusion. The formation of cell clusters of sizes 10-20 micrometers is a cooperative behavior that increases the uptake of dissolved carbon, enabling bacteria to initiate growth and degradation.

Cordero’s lab uses a combination of genomics, experiments, and modeling to understand the community ecology of microorganisms, as well as its functional and evolutionary consequences. Postdocs Ali Ebrahimi and Julia Schwartzman are also authors on the paper. Ebrahimi specialized in the modeling of biogeochemical processes at the microbe level. Julia Schwartzman specialized in the ecophysiology of microbes. Both are part of the Simons Collaboration PriME (Principles of Microbial Ecosystems), which is co-directed by Cordero and funds labs in University of California at San Diego, University of Southern California, Caltech, University of Georgia, ETH Zurich, and MIT.

by MIT News
Topics
Biodiversity
Waste

Related Posts

PostOctober 15, 2025

MIT engineers solve the sticky-cell problem in bioreactors and other indust...

MIT News
To test their setup, researchers allowed algae cells to stick to the surface of the photobioreactor. When they applied a voltage, the bubbles separated the cells from the surfaces without harming them.
PostSeptember 29, 2025

A beacon of light

Department of Urban Studies and Planning MIT
Marcelo Coelho (left) and the Geolectric Lantern
PostSeptember 4, 2025

A greener way to 3D print stronger stuff

MIT News
A new software and hardware toolkit called SustainaPrint can help users strategically combine strong and weak filaments to achieve the best of both worlds. Instead of printing an entire object with high-performance plastic, the system analyzes a model, predicts where the object is most likely to experience stress, and reinforces those zones with stronger material.
PostAugust 28, 2025

New self-assembling material could be the key to recyclable EV batteries

MIT News
A depiction of batteries made with MIT researchers’ new electrolyte material, which is made from a class of molecules that self-assemble in water, named aramid amphiphiles (AAs), whose chemical structures and stability mimic Kevlar.

MIT Climate News in Your Inbox

 
 

MIT Groups Log In

Log In

Footer

  • About
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Contact
MIT Climate Project
MIT
Communicator Award Winner
Communicator Award Winner