Skip to main content
Climate
Search

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
MIT

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
PostJanuary 8, 2020

The BBVA Foundation Awards Kerry Emanuel the Frontiers of Knowledge Award in Climate Change

Kerry Emanuel at ocean shore.

Wednesday, January 8, 2020

Emanuel’s research has provided fundamental contributions to understanding of tropical cyclones and how they are affected by climate change.

The BBVA Foundation -- which promotes knowledge based on research and artistic and cultural creation, and supports activity on the analysis of emerging issues in five strategic areas: environment, biomedicine and health, economy and society, basic sciences and technology, and Culture -- recognizes MIT Cecil and Ida Green Professor of Atmospheric Science Kerry Emanuel’s body of research on hurricanes and their evolution in a changing climate, as well as his effectiveness for communicating these issues. The annually bestowed Climate Change award acknowledges “both research endeavors in confronting this challenge and impactful actions informed by the best science.”

“By understanding the essential physics of atmospheric convection…he has unraveled the behavior of tropical cyclones – hurricanes and typhoons – as our climate changes,” cites the foundation’s conferring committee.

Throughout the 1980s and 1990s, after completing degrees at MIT and later joining the Department of Earth, Atmospheric and Planetary Sciences (EAPS) faculty, Emanuel pinned down the mechanisms behind hurricanes and how warming surface oceans fuel storms and increase intensity as the climate changes. This issue is of particular concern to humanity because, of the natural events, tropical cyclones cause many deaths and bring about high economic costs. Further research has probed connections between anthropogenic global warming and cyclone frequency, intensity, development time, and geographical expansion of hurricane occurrence.

The selection committee noted Emanuel’s exceptional theories and research that “has opened new approaches for assessing risks from weather extremes.” He has expanded this work by co-founding the MIT Lorenz Center, a climate think tank which fosters creative approaches to learning how climate works.

For Bjorn Stevens, BBVA Foundation committee chairman and Director of the Max Planck Institute for Meteorology, “it is hard to imagine an area of climate science where one person’s leadership is so incontestable.”

Read the full article here.

by MIT Department of Earth Atmospheric and Planetary Sciences
Topics
Atmosphere
Energy
Weather & Natural Disasters
Hurricanes

Related Posts

PostOctober 3, 2025

Secretary of Energy Chris Wright ’85 visits MIT

MIT News
U.S. Secretary of Energy Chris Wright ’85 visited the MIT campus on Sept. 29. Wright earned a BS in mechanical engineering and spent two and a half years pursuing graduate studies in the Department of Electrical Engineering and Computer Science before leaving to become an entrepreneur in the energy industry.
PostOctober 2, 2025

Lincoln Lab unveils the most powerful AI supercomputer at any US university...

MIT Lincoln Laboratory
System Engineer Antonio Rosa inspects equipment in the Lincoln Laboratory Supercomputing Center .
PostOctober 1, 2025

Concrete “battery” developed at MIT now packs 10 times the power

MIT News
An electron-conducting carbon concrete (ec³)-based arch structure integrates supercapacitor electrodes for dual functionality. The prototype demonstrates both structural load bearing and the ability to power an LED, with the light’s intensity varying under applied load, highlighting the potential for real-time structural health monitoring via the supercapacitor.
PostOctober 1, 2025

Palladium filters could enable cheaper, more efficient generation of hydrog...

MIT News
Palladium plug membrane at the end of the membrane fabrication process (left). Dashed green lines outline the membrane. Scanning electron microscopy image of the membrane shows the palladium plugs embedded inside the pores of the silica support (right).

MIT Climate News in Your Inbox

 
 

MIT Groups Log In

Log In

Footer

  • About
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Contact
MIT Climate Project
MIT
Communicator Award Winner
Communicator Award Winner