Skip to main content
MIT
Climate
Climate
  • Log In
  • Sign Up
  • Search

Main menu

  • Home
  • Explore
  • Community
Podcast

E3: TIL about materials

TILclimate Podcast's picture
By TILclimate Podcast
MIT Climate's podcast (Today I Learned: Climate)
Posted Mar 26, 2019

Content Tabs

Description

Humans use around 90 billion metric tons of materials every year, creating about ⅓ of total global greenhouse gas emissions. Which materials produce the most emissions? You might be surprised.

In this episode of TILclimate (Today I Learned: Climate), MIT professor Elsa Olivetti joins host Laur Hesse Fisher to talk about materials, or as Prof. Olivetti calls it, “the study of stuff”. Prof. Olivetti explains where these emissions come from and how to reduce emissions and waste in our manufacturing.

Prof. Olivetti is the Atlantic Richfield Associate Professor of Energy Studies in the Material Science and Engineering Department at MIT. Prof. Olivetti focuses her research on developing strategies to make materials and manufacturing more efficient, inexpensive, and environmentally-friendly.

For other climate explanations, check out: www.tilclimate.mit.edu.

 

Credits

  • Laur Hesse Fisher, Host and Producer

  • David Lishansky, Editor and Producer

  • Cecelia Bolon, Student Production Assistant

  • Ruby Wincele, Student Researcher

  • Music by Blue Dot Sessions

  • Artwork by Aaron Krol

Special thanks to Tom Kiley and Laura Howells.

Produced by the MIT Environmental Solutions Initiative at the Massachusetts Institute of Technology.

Transcript

Elsa Olivetti: [00:00:00] Just the quantity of materials is kind of astounding. I think that's partly what's tricky about any of these conversations around CO2 or you know materials use is that the numbers are huge and how do you relate them to anything that feels more concrete to us is difficult.  

Laur Hesse Fisher: [00:00:16] Thanks for joining us on Today I Learned Climate, where you learn about climate change from real scientists. I'm your host Laur Hesse Fisher. Today I asked an MIT Professor about stuff: the materials that companies use to build our infrastructure and that we use in our everyday lives.

Elsa Olivetti: [00:00:35] My name is Elsa Olivetti. I'm the associate professor... Wait no. That's not right. I'm the the Atlantic Richfield Associate Professor of Energy Studies. I work in the department of Material Science and Engineering here at MIT.

Laur Hesse Fisher: [00:00:50] Professor Olivetti studies the impact of materials on our environment and how we can lighten the load.

Elsa Olivetti: [00:00:56] I was always interested in the broader implications of materials and how they fit into the systems and society, you know how we interact with them as people.

So for example, if we were to increase the electrification of the vehicle fleet dramatically there would be a significant increase in demand for the derivatives of cobalt. So trying to understand kind of the match between the supply of those materials and the demand for those materials.

Laur Hesse Fisher: [00:01:19] And some of Professor Olivetti's work is at the lab bench where she and her students try to better understand the chemical makeup of materials.

This helps them explore how these materials can be used reused or recycled.

Elsa Olivetti: [00:01:32] A lot of times the way we currently dispose of those materials -- waste materials from different industries -- is either just in a landfill or as volume that would go into roads. And so that's that's a use, but it's not a particularly high value use, right?

So in order to understand how we might make use of those waste materials in higher value or more environmentally beneficial materials, we need to understand what's in there, what is their chemical composition, how reactive might they be under certain conditions...

Laur Hesse Fisher: [00:01:59] And the innovations that come from this research can be simple, yet pretty impactful.

Elsa Olivetti: [00:02:05] So one when thing we make that's pretty easy to wrap your head around is a brick right? So you.. But it's a brick that's fired at pretty high temperatures. So it's you know, we make that, the processing of that is upwards of a thousand degrees Celsius, but if we're able to make use of the chemistry, you know, we can do that instead of 30 degrees C.

Laur Hesse Fisher: [00:02:24] That's only 86 degrees Fahrenheit

Elsa Olivetti: [00:02:26] Or a warm day in India, which is where the project is based, so that works out. And so in order to do that, in order to enable that reaction to happen at 30 C, we need to understand how durable is that over time, is there going to be an issue if it's, you know in the monsoon season if there's a lot of water that's taken into those materials, those bricks. You know, we can develop a really fancy technology, but if we don't understand what the local context is then maybe that's not useful.

Laur Hesse Fisher: [00:02:53] So I've heard you share that materials and manufacturing make up about one-third of carbon emissions globally. Can you break that down for us? So what's causing these emissions?

Elsa Olivetti: [00:03:03] The majority of it is steel and cement. 25 to 30 percent is steel, and about 20% is cement. You know, aluminum and paper, and plastic are all about five percent, five to ten percent depending a little bit of how you group these things, but there are these big contributors and so it's just important not to forget that: that from a mass perspective that focusing on innovations in steel and cement are always useful. So if you want to move the needle on CO2 emissions when it comes to materials, you have to think about those those two.

Laur Hesse Fisher: [00:03:33] After water concrete, which is made from cement, is the second most widely used material on the planet. Think of all of our pavement all of our factories and buildings, Bridges and highways.

Elsa Olivetti: [00:03:47] To give a little bit of a scale, just the quantity of materials is kind of astounding. So it's I think it's 90 billion metric tons per year of materials.

And so cement is you know upwards of maybe between 3 and 4 billion metric tons per year.

Laur Hesse Fisher: [00:04:05] How can I even start thinking about billions of metric tons? Do you have any way that I can visualize that or try to understand that?

Elsa Olivetti: [00:04:14] Probably not. I mean, I don't know we--with it with the project in India we were thinking about the waste generation that was happening per day in these facilities in terms of elephants. Like you could sort of think about an elephant...

Laur Hesse Fisher: [00:04:26] How much does an elephant weigh?

Elsa Olivetti: [00:04:27] 2 to 5 tons...

Laur Hesse Fisher: [00:04:30] Okay. All right. So that's still billions of elephants.

Elsa Olivetti: [00:04:34] Yeah

Laur Hesse Fisher: [00:04:34] I can barely imagine a thousand elephants, let alone a billion elephants. That's just such a huge

Elsa Olivetti: [00:04:41] Yeah

Laur Hesse Fisher: [00:04:41] number.

Elsa Olivetti: [00:04:43] I think that's partly what's tricky about any of these conversations around CO2 or you know materials use is that you know, the numbers are huge and how do you relate them to you know to anything that you know feels more concrete to us? It's difficult.

We're on the orders of billions of metric tons. It's still growing, right? We're still building infrastructure. That's why trying to move the needle on CO2 emissions in that is hard because we're still making a lot.

Laur Hesse Fisher: [00:05:10] Okay, so steel and cement make up a majority of where CO2 emissions come from in materials and manufacturing.

But why what causes those emissions?

Elsa Olivetti: [00:05:20] We're talking about CO2 emissions. The majority is in two places really. It's, you know, the energy to run the factories, you know, the CO2 emitted because of energy generation and the CO2 that comes from the chemical reaction.

Laur Hesse Fisher: [00:05:34] To build this out a little so factories use a lot of electricity to make cement and steel, and the amount of CO2 associated with that depends on what kind of fuel is used to make the electricity.

So like you and your house may use as much electricity as I do in my house, but if you get your electricity from wind or solar, and if I get my electricity from coal or gas, then running the lights that your house will contribute a lot less CO2. So in addition to that, making cement requires chemical reactions that emit CO2 and other greenhouse gases. Kind of like how the chemical reaction that happens in your car's engine create CO2.

So when we look at the CO2 released by making steel and cement, we need to look at how much electricity is being used and how that electricity is being generated, as well as how many emissions are released from the actual chemical reactions.

Elsa Olivetti: [00:06:31] That depends on what grid you're using, but it's roughly 50/50 between the energy used and then the kind of reaction of the processing associated with that material.

Laur Hesse Fisher: [00:06:40] So as you're looking at something like steel and cement what are the efforts that are underway either by your team or other colleagues that you know about to reduce the impact of this?

Elsa Olivetti: [00:06:52] Trying to use supplemental cementitious materials, where we're using a little bit of something in place of a little bit of something else.

Laur Hesse Fisher: [00:07:00] So this is using a different ingredient for cement that actually reduces CO2 because there's not as much of a chemical reaction. And because this new ingredient is a waste product from another industry, this also means you're giving that waste and economic value and a second life. Another solution is to use a different material all together.

Elsa Olivetti: [00:07:23] Cars is a great example, right? The material that we're making our cars out of. So aluminum requires more energy to make, more electricity to make, but it'll use less CO2 over time depending on how long we drive the car.

Laur Hesse Fisher: [00:07:35] That's interesting, it would use less CO2 than something like steel, which is heavier, because the car actually takes less gas to run.

Elsa Olivetti: [00:07:42] Yeah.

Laur Hesse Fisher: [00:07:43] So scientists look at both the CO2 emissions from mining and making material and also the emissions that may come with using the material, like making cars lighter and more fuel efficient. But what happens when stuff is done being used? Well, how easily something can be reused or recycled is largely dependent on how it's made.

Elsa Olivetti: [00:08:08] As technology has become, you know, amazing and advanced we increasingly make things more complicated, meaning more elements, which you know, there's more different kinds of stuff in them, which makes it more difficult to manage at end of life. So we sometimes make the joke that you carry the periodic table in your pocket, in your cell phone, and it's not that much of an exaggeration because of the increasing complexity of that, and that's true not just for electronics, but alloys and jet engines and you know, the way we have become more and more advanced is typically adding more complexity to them.

So I think that that's just another tension in terms of the quantity is also the complexity and trying to manage that as much as we can is the challenge we face.

Laur Hesse Fisher: [00:09:01] Steel cement and reusing materials are huge areas for innovation, and many different groups at MIT and around the world are tackling them. To see some new and pretty creative solutions, check out our show notes on tilclimate.mit.edu. That's tilclimate.mit.edu.

What do you want to know about climate change? Do you still have a question from this episode or one of our previous episodes? Let us know. Tweet your question with the hashtag #TILclimate, or sending an email to climate at mit.edu.

Thanks so much to Professor Elsa Olivetti for speaking with us and to you for tuning in to Today I Learned Climate. I'm Laur Hesse Fisher from the MIT Environmental Solutions Initiative. See you next time.

More Info

An educator guide for this episode can be found below.

Read more about:

Prof. Olivetti’s projects:

  • Brick made out of industrial waste

  • Faculty Highlight: Elsa Olivetti (MIT News)

Solutions developed at MIT & beyond:

  • A company founded by MIT alumni recently developed a new way to process steel, that could cut 5% of CO2 emissions

  • MIT students found that plastic from disposable water bottles can be used to make concrete that is up to 15% stronger (MIT News)

  • An MIT Climate CoLab winner designed concrete made from hemp

  • An MIT research group focused on sustainable concrete

 

Educator Guide

Created by Olivia Burek, Alyssa Farkas, and Aaron Krol, with thanks to Sarah Hansen and MIT Open Learning

HIGH SCHOOL AND HIGHER EDUCATION

The following questions can be used to encourage your students to reflect on, extend, and apply what they’ve learned from the podcast episode. Re-use and remix them as writing prompts, discussion guides, or ideas for project-based learning in your classroom.

Questions 

Critical Thinking 

  • How does the strategy of making better use of waste materials compare to that of producing less waste to begin with? Would one approach be more effective than the other as a short-term solution? How about in the long run? Are the two strategies in conflict, or can they easily go together? What role does technology advancement play in either of these potential paths of action? What are some alternative methods to reduce the impact of materials like steel and concrete? How will different methods affect different industries? And different regions? What kinds of perspectives (i.e. economic, social, etc.) should go into material use decisions in your community? 
  • How might you minimize the quantity of materials you personally accumulate and/or waste? How might you persuade others in your community to do so as well? What kind of collective impact might this have on your immediate environment? Why is it important to consider material production and waste as part of the climate as a whole? And as an environmental factor in your own town?
  • Think about Professor Olivetti’s statement, “if we don’t understand what the local context is then maybe it’s [a new technology to deal with a specific problem] not useful.” Why is it important to understand local context when conducting research? What are the potential impacts of failing to do so? How could you go about trying to understand how your research might affect a community?

Research

  • What causes so much CO₂ to be released from materials and manufacturing? Why is there a need today for lowering these emissions? What are the challenges of lowering emissions from these sources? What are some ways to lower these emissions?
  • Professor Olivetti stated that the bulk of carbon emissions from materials production come from producing steel and cement, and that a smaller portion of emissions comes from producing aluminum, paper, and plastic. Choose one of these materials, and research how it is used. Is it, or can it be recycled, and if so, how? How much of this material goes to waste?
  • How do we currently dispose of many industrial waste materials in the United States? What are the environmental implications of these disposal methods? How does waste disposal work in your own community? How do industry waste disposal methods vary between your town and other nearby areas? How about between the U.S. and other wealthy countries? Do those methods differ from those in less developed countries?

Opinion 

  • Do you think your community is affected by materials production and disposal? If so, how? Do you think your community is a significant contributor of waste? How do you think you could influence the amount of waste produced in your own community?
  • How do you think individual choices affect industrial waste production and disposal? How does this compare to the influence of government and policymakers on this issue? Do you think the government and policymakers currently play a large enough role in encouraging sustainability of materials production and disposal? How about individuals? What other stakeholders could influence industry waste production and disposal?

Activities 

  • Design a plan for a waste reduction program that could work in your own community. You may want to consider what kind(s) of waste your program will target, how this program would be funded, and how you might measure its success. 
  • Imagine that you are overseeing a large construction project. First, decide what you would like to build. Then, consider which materials would be required to complete this project. How could you minimize emissions from their production and be efficient with their use?

 

Need additional open educational resources related to the topics of materials and climate? You may find these free teaching materials from MIT OpenCourseWare (ocw.mit.edu) helpful: 

Systems Perspectives on Industrial Ecology
Level: Graduate
https://tinyurl.com/y5em3kjz
This course, taught by Dr. Frank Field, Dr. Jeremy Gregory, and Professor Randolph Kirchain, examines techniques for life cycle analysis of the impacts of materials extraction, processing, use, and recycling; and economic analysis of materials processing, products, and markets. Educators have access to the syllabus, reading list, assignments, and lecture notes, including six sets of notes on life cycle analysis.  

D-Lab: Waste
Level: Undergraduate/Graduate
https://tinyurl.com/yb355gxv
This course, taught by Kate Mytty and Pedro Reynolds-Cuellar, takes a multidisciplinary approach to managing waste in low- and middle-income countries. Educators have access to the syllabus, reading list, assignments, lecture notes, and a collection of Instructor Insights in which Kate Mytty describes various aspects of how she taught the course.
 
Design for Sustainability
Level: Graduate
https://tinyurl.com/yxf9vfm9
This course, taught by Dr. Eric Adams and Professors Jerome Connor and John Ochsendorf, examines the growing popularity of sustainability and its implications for the practice of engineering, particularly for the built environment. Educators have access to the syllabus, reading list, selected lecture notes, assignments, and fifteen examples of student projects from the Fall 2006 iteration of the course.

24 Upvotes
24 likes
Write a comment
Share:
facebook linkedin twitter email compact

Topics 

  • Buildings
  • Education
  • Infrastructure
  • Science
  • Technology

Related Posts

Post

Two leading U.S. climate reporters share insights at MIT Communications Forum

Post

MIT technology powers new, accessible climate solutions simulator

Post

Getting the carbon out of the electricity sector

All Comments

Login or Signup to comment
  • About
  • Terms & Conditions
  • Community Guidelines
  • Privacy Policy
  • Send Feedback
MIT
Massachusetts Institute of Technology
Cambridge MA 02139-4307

The views and opinions expressed on this site do not necessarily reflect the official policies or positions of MIT.

  • Home
  • Community
  • Explore
  • Search

Report Content

You must have Javascript enabled to use this form.