Skip to main content
Climate
Search

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
MIT

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
PostJanuary 3, 2023

Thermodynamics and Climate Change

Diagram of tidal power generating turbine.
Photo Credit
A turbine capturing tidal energy. Power is generated both as the tide comes in and goes out. (Credit: NASA)

From air-conditioners and electric vehicles to humans and photosynthesizing plants, every system that converts energy from one form to another is governed by the laws of thermodynamics. So fundamental are these laws that Einstein himself once said they comprise “the only physical theory of universal content, which I am convinced…will never be overthrown.” However, with great power comes great responsibility. Our understanding of thermodynamics enabled the industrial revolution and virtually every technological breakthrough since, but it has also led to the over-consumption of fossil fuels and associated global warming. Now we need to turn the problem on its head and use these theories to  find a solution. 

The primary aim of this course is to have students reach an undergraduate-level understanding of thermodynamics through the lens of climate change, paying special attention to placing fundamental concepts within a narrative that emphasizes both the benefits and dangers of technological progress. You will learn the three laws of thermodynamics, explore concepts like entropy and enthalpy, and investigate the causes and effects of global warming from a thermodynamics perspective. We will also apply these concepts to learning about state-of-the-art energy conversion and storage technologies like heat pumps, hydrogen fuel cells, metal-air batteries, artificial photosynthesis, molten salt storage, concentrated solar power, and many more.

This course was offered as part of MITES Semester (formerly MOSTEC) in Summer 2020. MITES Semester is a 6-month online program for rising high-school seniors. The program offers students an opportunity to learn about diverse science and engineering fields, strengthen their academic STEM foundation, build 21st-century skills in networking, interviewing, collaboration and presentation delivery, prepare for college, and build a strong community of peers and mentors.

The OCW course site includes an online textbook, coding labs, and problem sets with solutions.

Course instructor: Dr. Peter Godart

View the course >>

by MIT OCW
Topics
Education
Energy

Related Posts

PostOctober 3, 2025

Secretary of Energy Chris Wright ’85 visits MIT

MIT News
U.S. Secretary of Energy Chris Wright ’85 visited the MIT campus on Sept. 29. Wright earned a BS in mechanical engineering and spent two and a half years pursuing graduate studies in the Department of Electrical Engineering and Computer Science before leaving to become an entrepreneur in the energy industry.
PostOctober 1, 2025

Concrete “battery” developed at MIT now packs 10 times the power

MIT News
An electron-conducting carbon concrete (ec³)-based arch structure integrates supercapacitor electrodes for dual functionality. The prototype demonstrates both structural load bearing and the ability to power an LED, with the light’s intensity varying under applied load, highlighting the potential for real-time structural health monitoring via the supercapacitor.
PostOctober 1, 2025

Palladium filters could enable cheaper, more efficient generation of hydrog...

MIT News
Palladium plug membrane at the end of the membrane fabrication process (left). Dashed green lines outline the membrane. Scanning electron microscopy image of the membrane shows the palladium plugs embedded inside the pores of the silica support (right).
PostSeptember 30, 2025

Responding to the climate impact of generative AI

MIT News
“We are on a path where the effects of climate change won’t be fully known until it is too late to do anything about it,” says Jennifer Turliuk MBA ’25, who is working to help policymakers, scientists, and enterprises consider the multifaceted costs and benefits of generative AI. “This is a once-in-a-lifetime opportunity to innovate and make AI systems less carbon-intense.”

MIT Climate News in Your Inbox

 
 

MIT Groups Log In

Log In

Footer

  • About
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Contact
MIT Climate Project
MIT
Communicator Award Winner
Communicator Award Winner