Skip to main content
Climate
Search

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
MIT

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
PostNovember 23, 2020

Researchers decipher structure of promising battery materials

Researchers at MIT and other institutions have found a way to stabilize the growth of crystals of several kinds of metal organic frameworks, or MOFs. This image shows two scanning electron microscopy (SEM) micrographs of Cu3HHTT2 and Co6HHTT3 that can be isolated on-demand with either rod- or plate-like (inset) morphology by varying the synthetic conditions.

A class of materials called metal organic frameworks, or MOFs, has attracted considerable interest over the last several years for a variety of potential energy-related applications — especially since researchers discovered that these typically insulating materials could also be made electrically conductive.

Thanks to MOFs’ extraordinary combination of porosity and conductivity, this finding opened the possibility of new applications in batteries, fuel cells, supercapacitors, electrocatalysts, and specialized chemical sensors. But the process of developing specific MOF materials that possess the desired characteristics has been slow. That’s largely because it’s been hard to figure out their exact molecular structure and how it influences the material’s properties.

Now, researchers at MIT and other institutions have found a way to control the growth of crystals of several kinds of MOFs. This made it possible to produce crystals large enough to be probed by a battery of tests, enabling the team to finally decode the structure of these materials, which resemble the two-dimensional hexagonal lattices of materials like graphene.

The findings are described today in the journal Nature Materials, in a paper by a team of 20 at MIT and other universities in the U.S., China, and Sweden, led by W. M. Keck Professor of Energy Mircea Dincă from MIT’s Department of Chemistry.

Since conductive MOFs were first discovered a few years ago, Dincă says, many teams have been working to develop versions for many different applications, “but nobody had been able to get a structure of the material with so much detail.” The better the details of those structures are understood, he says, “it helps you design better materials, and much faster. And that’s what we’ve done here: We provided the first detailed crystal structure at atomic resolution.”

The difficulty in growing crystals that were large enough for such studies, he says, lies in the chemical bonds within the MOFs. These materials consist of a lattice of metal atoms and organic molecules that tend to form into crooked needle- or thread-like crystals, because the chemical bonds that connect the atoms in the plane of their hexagonal lattice are harder to form and harder to break. In contrast, the bonds in the vertical direction are much weaker and so keep breaking and reforming at a faster rate, causing the structures to rise faster than they can spread out. The resulting spindly crystals were far too small to be characterized by most available tools.

The team solved that problem by changing the molecular structure of one of the organic compounds in the MOF so that it changed the balance of electron density and the way it interacts with the metal. This reversed the imbalance in the bond strengths and growth rates, thus allowing much larger crystal sheets to form. These larger crystals were then analyzed using a battery of high-resolution diffraction-based imaging techniques.

As was the case with graphene, finding ways to produce larger sheets of the material could be a key to unlocking the potential of this type of MOFs, Dincă says. Initially graphene could only be produced by using sticky tape to peel off single-atom-thick layers from a block of graphite, but over time methods have been developed to directly produce sheets large enough to be useful. The hope is that the techniques developed in this study could help pave the way to similar advances for MOFs, Dincă says.

“This is basically providing a basis and a blueprint for making large crystals of two-dimensional MOFs,” he says.

As with graphene, but unlike most other conductive materials, the conductive MOFs have a strong directionality to their electrical conductivity: They conduct much more freely along the plane of the sheet of material than in the perpendicular direction.

This property, combined with the material’s very high porosity, could make it a strong candidate to be used as an electrode material for batteries, fuel cells, or supercapacitors. And when its organic components have certain groups of atoms attached to them that bond to particular other compounds, they could be used as very sensitive chemical detectors.

Graphene and the handful of other 2D materials known have opened up a wide swath of research in potential applications in electronics and other fields, but those materials have essentially fixed properties. Because MOFs share many of those materials’ characteristics, but form a broad family of possible variations with varying properties, they should allow researchers to design the specific kinds of materials needed for a particular use, Dincă says.

For fuel cells, for example, “you want something that has a lot of active sites” for reactivity on the large surface area provided by the structure with its open latticework, he says. Or for a sensor to monitor levels of a particular gas such as carbon dioxide, “you want something that is specific and doesn’t give false positives.” These kinds of properties can be engineered in through the selection of the organic compounds used to make the MOFs, he says.

The team included researchers from MIT’s departments of Chemistry, Biology, and Electrical Engineering and Computer Science; Peking University and the Shanghai Advanced Research University in China; Stockholm University in Sweden; the University of Oregon; and Purdue University. The work was supported by the U.S. Army Research Office.

by MIT News
Topics
Energy
Batteries, Storage & Transmission

Related Posts

PodcastJuly 10, 2025

E8: Transmission: power to the people

TILclimate Podcast
TILclimate logo
PostJuly 2, 2025

3 Questions: How MIT’s venture studio is partnering with MIT labs to solv...

MIT News
David Cohen-Tanugi has been the venture builder for Proto Ventures’ fusion and clean energy channel since 2023.
PostJuly 2, 2025

Confronting the AI/energy conundrum

MIT Energy Initiative
At the 2025 MIT Energy Initiative Spring Symposium, Evelyn Wang (at lectern), the MIT vice president for energy and climate, joined MITEI Director William H. Green to discuss how collaborations across campus can help solve the data center challenge.
PostJune 27, 2025

Nth Cycle is bringing critical metals refining to the U.S.

MIT News
A rendering of Nth Cycle's modular refining system called "The Oyster."

MIT Climate News in Your Inbox

 
 

MIT Groups Log In

Log In

Footer

  • About
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Contact
MIT Climate Project
MIT
Communicator Award Winner
Communicator Award Winner