Skip to main content
Climate
Search

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
MIT

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
PostDecember 4, 2018

A powerful new battery could give us electric planes that don’t pollute

Brightly colored molecular models line two walls of Yet-Ming Chiang’s office at MIT. Chiang, a materials science professor and serial battery entrepreneur, has spent much of his career studying how slightly different arrangements of those sticks and spheres add up to radically different outcomes in energy storage.

But he and his colleague, Venkat Viswanathan, are taking a different approach to reach their next goal, altering not the composition of the batteries but the alignment of the compounds within them. By applying magnetic forces to straighten the tortuous path that lithium ions navigate through the electrodes, the scientists believe, they could significantly boost the rate at which the device discharges electricity.

Read the full article here!

by MIT Department of Materials Science and Engineering - DMSE
Topics
Energy
Batteries, Storage & Transmission
Air Travel

Related Posts

PostOctober 17, 2025

School of Engineering welcomes new faculty in 2024-25

MIT News
Top row, left to right: Masha Folk, Sophia Henneberg, Omar Khattab, and Tania Lopez Silva. Bottom row, left to right: Ethan Peterson, Daniel Varon, Dean Price, and Raphael Zufferey.
PostOctober 15, 2025

MIT engineers solve the sticky-cell problem in bioreactors and other indust...

MIT News
To test their setup, researchers allowed algae cells to stick to the surface of the photobioreactor. When they applied a voltage, the bubbles separated the cells from the surfaces without harming them.
PostOctober 15, 2025

Why some quantum materials stall while others scale

MIT News
MIT researchers have developed a system for evaluating the scale-up potential of quantum materials. Their data-driven framework combines a material’s quantum behavior with its cost, supply chain resilience, environmental footprint, and other factors.
PostOctober 7, 2025

Fighting for the health of the planet with AI

MIT News
“Machine learning is already really widely used for things like solar power forecasting, which is a prerequisite to managing and balancing power grids,” says EECS assistant professor and LIDS PI Priya Donti. “My focus is: How do you improve the algorithms for actually balancing power grids in the face of a range of time-varying renewables?”

MIT Climate News in Your Inbox

 
 

MIT Groups Log In

Log In

Footer

  • About
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Contact
MIT Climate Project
MIT
Communicator Award Winner
Communicator Award Winner