Skip to main content
Climate
Search

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
MIT

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
PostMay 13, 2021

MITx Course: Sustainable Building Design

Elements of energy-efficient house
Photo Credit
MITx
Learn and explore key scientific principles, technologies, and analysis techniques for designing comfortable indoor environments while reducing energy use and associated climate change effects.
About this online course:

Meeting growing global energy demand, while mitigating climate change and environmental impacts, requires a large-scale transition to clean, sustainable energy systems. Students and professionals around the world must prepare for careers in this future energy landscape, gaining relevant skills and knowledge to expedite the transformation in industry, government and nongovernmental organizations, academia, and nonprofits.

The building sector represents a large percentage of overall energy consumption, and contributes 40% of the carbon emissions driving climate change. Yet buildings also offer opportunities for substantial, economical energy efficiency gains. From retrofit projects to new construction, buildings require a context-specific design process that integrates efficiency strategies and technologies.

In this course, you'll be introduced to a range of technologies and analysis techniques for designing comfortable, resource-efficient buildings.

The primary focus of this course is the study of the thermal and luminous behavior of buildings. You'll examine the basic scientific principles underlying these phenomena, and use computer-aided design software and climate data to explore the role light and energy can play in shaping architecture.

These efficiency design elements are critical to the larger challenge of producing energy for a growing population while reducing carbon emissions.

Meet your instructor:

Christoph Reinhart

Professor, Director of the Building Technology Program

Massachusetts Institute of Technology

 

Course starts May 25. Learn more & register
by MIT Open Learning
Topics
Buildings
Cities & Planning
Energy
Energy Efficiency

Related Posts

PostOctober 3, 2025

Secretary of Energy Chris Wright ’85 visits MIT

MIT News
U.S. Secretary of Energy Chris Wright ’85 visited the MIT campus on Sept. 29. Wright earned a BS in mechanical engineering and spent two and a half years pursuing graduate studies in the Department of Electrical Engineering and Computer Science before leaving to become an entrepreneur in the energy industry.
PostOctober 2, 2025

Lincoln Lab unveils the most powerful AI supercomputer at any US university...

MIT Lincoln Laboratory
System Engineer Antonio Rosa inspects equipment in the Lincoln Laboratory Supercomputing Center .
PostOctober 1, 2025

Concrete “battery” developed at MIT now packs 10 times the power

MIT News
An electron-conducting carbon concrete (ec³)-based arch structure integrates supercapacitor electrodes for dual functionality. The prototype demonstrates both structural load bearing and the ability to power an LED, with the light’s intensity varying under applied load, highlighting the potential for real-time structural health monitoring via the supercapacitor.
PostOctober 1, 2025

Palladium filters could enable cheaper, more efficient generation of hydrog...

MIT News
Palladium plug membrane at the end of the membrane fabrication process (left). Dashed green lines outline the membrane. Scanning electron microscopy image of the membrane shows the palladium plugs embedded inside the pores of the silica support (right).

MIT Climate News in Your Inbox

 
 

MIT Groups Log In

Log In

Footer

  • About
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Contact
MIT Climate Project
MIT
Communicator Award Winner
Communicator Award Winner