Skip to main content
Climate
Search

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
MIT

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
PostJanuary 31, 2024

How new magnets could accelerate climate action

Niron Magnetics
Photo Credit
Niron Magnetics

The motor in your vacuum cleaner and the one in your electric vehicle likely have at least one thing in common: they both rely on powerful permanent magnets to function. And the materials for those magnets could soon be in short supply. 

Permanent magnets can maintain a magnetic field on their own without an electric charge. They’re commonly used in motors, making them spin when an electric field is applied. The permanent magnets used in high-end motors today are built using a class of materials called rare earth metals. Demand for these materials is expected to skyrocket in the coming decades, fueled in particular by the growth of electric vehicles and wind turbines. As mines and processing facilities struggle to keep up, supplies may stretch thin.

One Minnesota startup has been working to address this looming shortage. Niron Magnetics is building a large-scale manufacturing facility to produce iron nitride, a magnetic material derived from common elements, while also working to improve the material’s properties so that it can be used in stronger magnets to power more products. The results may help address yet another coming supply crunch that threatens to slow down action on climate change.

Read the full story in MIT Technology Review.

by MIT Technology Review
Topics
Batteries, Storage & Transmission
Renewable Energy
Industry & Manufacturing
Cars

Related Posts

PostMay 6, 2025

How can India decarbonize its coal-dependent electric power system?

MIT Energy Initiative
India has pledged to reduce its carbon emissions, a difficult task as the country’s electric power system relies on many coal-burning power plants. While some of the plants are fuel-efficient (right), many more are not (left). MITEI researchers have explored and clarified India’s decarbonization options and have posted their methods and results for use by other countries in the midst of similar energy transitions.
PostMay 5, 2025

New tool evaluates progress in reinforcement learning

MIT News
“We got interested a few years ago in the question, is there something that automated vehicles could do here in terms of mitigating emissions,” says MIT Professor Cathy Wu. “Is it a drop in the bucket, or is it something to think about?”
PostMay 1, 2025

SLB joins the MIT.nano Consortium

MIT News
Left to right: Lalitha Venkataramanan, scientific advisor and SLB research center manager; Kelly Gavin, MIT.nano consortium manager; Vladimir Bulović, MIT.nano director and the Fariborz Maseeh (1990) Professor of Emerging Technologies at MIT; and Smaine Zeroug, research director and SLB ambassador to MIT.
PodcastApril 24, 2025

Removing fossil fuels from industrial processes

MIT Energy Initiative

MIT Climate News in Your Inbox

 
 

MIT Groups Log In

Log In

Footer

  • About
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Contact
MIT Climate Project
MIT
Communicator Award Winner
Communicator Award Winner