Skip to main content
Climate
Search

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
MIT

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
PostAugust 12, 2019

How much carbon dioxide is actually in your products?

Imagine driving your brand-new electric vehicle along Main Street on a weekday evening. Sleek and silent, you are the envy of the entire town. You know that the carbon dioxide directly emitted from the engine is nil: that was the whole point of buying the thing, wasn’t it? Going a little further — as you are an environmentally conscious owner — you didn’t find it difficult to figure out, and abate, the climate impact of the electricity you used to charge the car: your local utility offers a green tariff so that you can buy low-carbon electricity.

At this point, you might think that your job of reducing the carbon footprint of your car is pretty much complete. But have you ever thought about the CO2 that was emitted in the production of the car? How far were the materials and components transported? Was the lithium in the batteries extracted in a high-altitude Chilean desert or in a remote part of China? Was the copper in the wires mined in Arizona or in Africa? Was the iron ore for the steel extracted in Australia and then processed in China, or was the steel made from recycled scrap metal?

Read more about the work from MIT Center for Transportation & Logistics at medium.com.

Sby Suzanne Greene
Topics
Energy
Finance & Economics
Industry & Manufacturing
Transportation

Related Posts

PostJuly 4, 2025

Robotic probe quickly measures key properties of new materials

MIT News
Scientists are striving to discover new semiconductor materials that could boost the efficiency of solar cells and other electronics. The pace of innovation is bottlenecked by the speed at which researchers can manually measure important material properties, but a fully autonomous robotic system developed by MIT researchers could speed things up.
PostJuly 2, 2025

3 Questions: How MIT’s venture studio is partnering with MIT labs to solv...

MIT News
David Cohen-Tanugi has been the venture builder for Proto Ventures’ fusion and clean energy channel since 2023.
PostJuly 2, 2025

Confronting the AI/energy conundrum

MIT Energy Initiative
At the 2025 MIT Energy Initiative Spring Symposium, Evelyn Wang (at lectern), the MIT vice president for energy and climate, joined MITEI Director William H. Green to discuss how collaborations across campus can help solve the data center challenge.
PostJuly 1, 2025

VAMO proposes an alternative to architectural permanence

MIT News
VAMO (Vegetal, Animal, Mineral, Other), is an ultra-lightweight, biodegradable, and transportable canopy designed to circle around a brick column in the Corderie of the Venice Arsenale — a historic space originally used to manufacture ropes for the city’s naval fleet.

MIT Climate News in Your Inbox

 
 

MIT Groups Log In

Log In

Footer

  • About
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Contact
MIT Climate Project
MIT
Communicator Award Winner
Communicator Award Winner