Skip to main content
Climate
Search

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
MIT

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
PostJune 28, 2022

How green steel made with electricity could clean up a dirty industry

When you climb up a set of stairs to look over Boston Metal’s newest project, it becomes clear just how big a job it is to cut steel’s climate impact. 

The impressive new installation is a pilot reactor that the startup will use to make emissions-free steel. It’s about the size of a school bus, set down into the floor of the research facility; the stairs, with freshly painted yellow railings, lead to the top. But in the steel industry, which produces nearly 2 billion tons per year, this setup’s potential output is a drop in the bucket.

Industrial steelmaking spits out about two tons of carbon dioxide emissions for every ton of steel produced—adding up to nearly 10% of such emissions worldwide. The global steel market is expected to grow about 30% by 2050, the date by which some of the largest steelmakers have pledged to reach net-zero emissions. Unless major changes come to the industry, and fast, that goal might be out of reach.

Boston Metal’s new reactor, recently installed at its headquarters just north of Boston, is a significant step on the company’s journey to going commercial. Since its founding in 2013, the startup has developed a process to make green steel, working out the details in smaller vessels. The new reactor, along with a coming fundraising round, represents the next leap for the company as it tries to scale up.

Read the full story at MIT Technology Review.

by MIT Technology Review
Topics
Electrification
Industry & Manufacturing

Related Posts

PostJune 11, 2025

A vision for transportation resilience in the energy transition

MIT Center for Sustainability Science and Strategy
Rethinking resilience of low-carbon transportation
PostJune 3, 2025

Study shows making hydrogen with soda cans and seawater is scalable and sus...

MIT News
MIT engineers have developed a new aluminum-based process to produce hydrogen gas, that they are testing on a variety of applications, including an aluminum-powered electric vehicle, pictured here.
PostJune 2, 2025

AI stirs up the recipe for concrete in MIT study

MIT Concrete Sustainability Hub
A team led by Soroush Mahjoubi, a postdoc in civil and environmental engineering, built a machine-learning framework that evaluates and sorts candidate materials for cleaner concrete based on their physical and chemical properties. “Some of the most interesting materials that could replace a portion of cement are ceramics,” notes Mahjoubi. “Old tiles, bricks, pottery — all these materials may have high reactivity.”
PostMay 30, 2025

A test bed for sustainable manufacturing

MIT Spectrum
An illustration of a person holding a globe. Coins are being sucked out of the globe and into a cloud of smoke pouring out of a factory, presenting environmental cost.

MIT Climate News in Your Inbox

 
 

MIT Groups Log In

Log In

Footer

  • About
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Contact
MIT Climate Project
MIT
Communicator Award Winner
Communicator Award Winner