Skip to main content
Climate
Search

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Podcast
    • Explainers
    • Climate Questions
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
MIT

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Podcast
    • Explainers
    • Climate Questions
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
PostJune 27, 2023

How electrifying steam could cut beer’s carbon emissions

Image of Fat Tire ale 6-pack
Photo Credit
STEPHANIE ARNETT/MITTR | NEW BELGIUM BREWING, ENVATO

Next year, New Belgium Brewing will swap out one of the four natural-gas-powered boilers at its main brewing facility in Fort Collins, Colorado, for an electrified version designed to cut greenhouse-gas emissions.

The modular, 650-kilowatt pilot boiler system was developed by AtmosZero, a startup also based in Fort Collins and coming out of stealth today.

“To decarbonize industry, we must decarbonize heat,” says Addison Stark, chief executive and cofounder of the startup. 

Indeed, heat production from industry may account for around 10% of global carbon dioxide pollution. The sector relies heavily on steam to transfer heat, sterilize equipment and goods, and separate chemicals. Globally, the practice could generate more than 2 billion tons of carbon dioxide pollution per year, according to an earlier analysis by Stark and a colleague.

New Belgium Brewing, best known for producing Fat Tire ale, uses vast amounts of steam to fine-tune the temperatures within its boil kettles, helping to draw out flavors from hops and grains at crucial points of the beer-making process.

Electric boilers that can draw power mostly from renewables like solar and wind do exist and are already used in manufacturing. But they generally rely on resistive heating, which produces heat by passing an electric current through a conductive material, or the water in the boiler. That sucks up a lot of electricity and pushes up costs, which has prevented such devices from grabbing much market share to date, says Stark, previously a fellow and acting director at ARPA-E, the US Department of Energy’s advanced research arm.

Instead, AtmosZero leans on heat pump technology, which uses electricity to circulate refrigerants with low boiling points through a closed loop. The device draws in heat from the surrounding air, uses a compressor to increase the temperature of the refrigerant enough to boil water, and then transfers that thermal energy through a heat exchanger into a vessel that produces steam.

Heat pumps can be far more efficient than products that rely on resistive heating because, as MIT Technology Review’s Casey Crownhart laid out in an earlier explainer, most of the electricity is used to gather heat and move it around, rather than producing it directly.

Stark says that a commercial version of the company’s device could be up to twice as efficient as resistive boilers. 

Read the full story at MIT Technology Review.

by MIT Technology Review
Topics
Energy
Electrification
Fossil Fuels
Industry & Manufacturing

Related Posts

PostFebruary 11, 2026

Is Fusion Too Late? How Investors Value its Role in a Decarbonized Europe

MIT Center for Energy and Environmental Policy Research
Concept art of an atom
PostFebruary 9, 2026

PODCAST: Climate Reveal (Season 2, Episode 2) - Climate Modeling

MIT Center for Sustainability Science and Strategy
Podcast: Climate Reveal
PostJanuary 21, 2026

Electrifying boilers to decarbonize industry

MIT News
“Steam is the most important working fluid ever,” says AtmosZero co-founder Addison Stark.
PostJanuary 13, 2026

Understanding ammonia energy’s tradeoffs around the world

MIT News
“Before this, there was no harmonized datasets quantifying the impacts of this transition,” says lead author Woojae Shin. “It’s filling a major knowledge gap.”

MIT Climate Knowledge in Your Inbox

 
 

MIT Groups Log In

Log In

Footer

  • About
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Contact
MIT Climate Project
MIT
  • Instagram
  • TikTok
  • YouTube
  • Simplecast
Communicator Award Winner
Communicator Award Winner