Skip to main content
Climate
Search

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
MIT

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
PostMay 2, 2023

How chemists could give new life to old wind turbine blades

Decommissioned wind turbines
Photo Credit
GETTY IMAGES

Wind turbines are crucial for addressing climate change, but when they’ve reached the end of their lives, turbine blades could add up to a lot of waste. Now new research, published in Nature, could represent a first step toward building renewable-energy infrastructure that doesn’t end up in a landfill.

Wind turbine blades need to be tough to be useful. These workhorses of renewable energy last for decades, frequently spinning around up to 30 times each minute.

But when it’s time to decommission one, a wind turbine’s strength can become a weakness.  Because the blades are designed to be so durable, the materials used to build them can’t currently be recycled. And about 43 million tons of these blades will be decommissioned by 2050.

The new work describes a way to recover the main components of wind turbine blades, breaking down the plastic that holds them together without destroying the material’s primary building blocks.

Read the full story at MIT Technology Review.

by MIT Technology Review
Topics
Renewable Energy
Industry & Manufacturing
Waste

Related Posts

PostOctober 15, 2025

MIT engineers solve the sticky-cell problem in bioreactors and other indust...

MIT News
To test their setup, researchers allowed algae cells to stick to the surface of the photobioreactor. When they applied a voltage, the bubbles separated the cells from the surfaces without harming them.
PostOctober 15, 2025

Why some quantum materials stall while others scale

MIT News
MIT researchers have developed a system for evaluating the scale-up potential of quantum materials. Their data-driven framework combines a material’s quantum behavior with its cost, supply chain resilience, environmental footprint, and other factors.
PostOctober 8, 2025

How to reduce greenhouse gas emissions from ammonia production

MIT Energy Initiative
MIT researchers have proposed an approach for combined blue-green ammonia production that minimizes waste products and, when combined with some other simple upgrades, could reduce the greenhouse emissions from ammonia production by as much as 63 percent, compared to the leading “low-emissions” approach being used today.
PostOctober 7, 2025

Fighting for the health of the planet with AI

MIT News
“Machine learning is already really widely used for things like solar power forecasting, which is a prerequisite to managing and balancing power grids,” says EECS assistant professor and LIDS PI Priya Donti. “My focus is: How do you improve the algorithms for actually balancing power grids in the face of a range of time-varying renewables?”

MIT Climate News in Your Inbox

 
 

MIT Groups Log In

Log In

Footer

  • About
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Contact
MIT Climate Project
MIT
Communicator Award Winner
Communicator Award Winner