Skip to main content
Climate
Search

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
MIT

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
PostMay 2, 2023

How chemists could give new life to old wind turbine blades

Decommissioned wind turbines
Photo Credit
GETTY IMAGES

Wind turbines are crucial for addressing climate change, but when they’ve reached the end of their lives, turbine blades could add up to a lot of waste. Now new research, published in Nature, could represent a first step toward building renewable-energy infrastructure that doesn’t end up in a landfill.

Wind turbine blades need to be tough to be useful. These workhorses of renewable energy last for decades, frequently spinning around up to 30 times each minute.

But when it’s time to decommission one, a wind turbine’s strength can become a weakness.  Because the blades are designed to be so durable, the materials used to build them can’t currently be recycled. And about 43 million tons of these blades will be decommissioned by 2050.

The new work describes a way to recover the main components of wind turbine blades, breaking down the plastic that holds them together without destroying the material’s primary building blocks.

Read the full story at MIT Technology Review.

by MIT Technology Review
Topics
Renewable Energy
Industry & Manufacturing
Waste

Related Posts

PodcastJuly 10, 2025

E8: Transmission: power to the people

TILclimate Podcast
TILclimate logo
PostJuly 4, 2025

Robotic probe quickly measures key properties of new materials

MIT News
Scientists are striving to discover new semiconductor materials that could boost the efficiency of solar cells and other electronics. The pace of innovation is bottlenecked by the speed at which researchers can manually measure important material properties, but a fully autonomous robotic system developed by MIT researchers could speed things up.
PostJuly 2, 2025

3 Questions: How MIT’s venture studio is partnering with MIT labs to solv...

MIT News
David Cohen-Tanugi has been the venture builder for Proto Ventures’ fusion and clean energy channel since 2023.
PostJuly 1, 2025

VAMO proposes an alternative to architectural permanence

MIT News
VAMO (Vegetal, Animal, Mineral, Other), is an ultra-lightweight, biodegradable, and transportable canopy designed to circle around a brick column in the Corderie of the Venice Arsenale — a historic space originally used to manufacture ropes for the city’s naval fleet.

MIT Climate News in Your Inbox

 
 

MIT Groups Log In

Log In

Footer

  • About
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Contact
MIT Climate Project
MIT
Communicator Award Winner
Communicator Award Winner