Skip to main content
Climate
Search

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
MIT

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
PostJanuary 21, 2020

Estimating irrigated crop yields and irrigation water requirements

New method enables a more comprehensive assessment of the impact of climate change on agriculture

By Mark Dwortzan | MIT Joint Program on the Science and Policy of Global Change

The Science

Statistical emulators of global gridded crop models are designed to provide a far less computationally intensive way to assess the impact of climate change on crop yields. This study advances statistical emulators to provide an accessible tool to assess the impact of climate change on irrigated crop yields and irrigation water withdrawals, while accounting for crop modeling uncertainty.  

The Impact

This new research, combined with previous work developing emulators for dryland crop yields, provides a computationally feasible approach for integrating irrigation water demands and crop yield effects into multisectoral models to study effects on land, water and energy use and their dynamics.

Summary

In a previous paper focused on four major rain-fed breadbasket crops—maize, rice, soybean and wheat—the author developed a set of crop yield statistical emulators and showed that they could produce results comparable to those generated by an ensemble of global gridded crop model (GGCM) simulations upon which they were trained. This new study provides statistical emulators of GGCMs to estimate irrigated crop yields and associated irrigation water withdrawals for maize, rice, soybean and wheat. Those emulators are estimated using data from an ensemble of simulations from five GGCMs from the Inter-Sectoral Impact Model Intercomparison Project Fast Track project. Crop-specific response functions for each GGCM are estimated at the grid-cell level over the globe. Validation exercises confirm that the statistical emulators are able to replicate the crop models’ spatial patterns of irrigated crop yields and irrigation water withdrawals reasonably well, both in terms of levels and changes over time, although accuracy varies by model and by region. This study therefore provides a reliable and computationally efficient alternative to global gridded crop models.

Funding

The study was funded by the U.S. Department of Energy (DOE) Office of Science under the grant DE-FG02-94ER61937 and other government, industry and foundation sponsors of the MIT Joint Program.

Publication

Blanc, E. (2020): Statistical Emulators of Irrigated Crop Yields and Irrigation Water Requirements. Agricultural and Forest Meteorology Volume 284, 107828 (doi: 10.1016/j.agrformet.2019.107828)

 

Photo: Focusing on four major crops—maize, rice, soybean and wheat—this study provides a reliable and computationally efficient alternative to globally gridded crop yield models. (Source; Flickr/ Eddie McHugh)

Associated Publication: 

Statistical emulators of irrigated crop yields and irrigation water requirements

by MIT Center for Sustainability Science and Strategy
Topics
Food, Water & Agriculture

Related Posts

PostNovember 18, 2025

Ultrasonic device dramatically speeds harvesting of water from the air

MIT News
MIT engineers design an ultrasonic system to “shake” water out of an atmospheric water harvester. The design (two prototypes shown in photo) can recover captured water in minutes rather than hours.
PostNovember 17, 2025

PODCAST: Climate Reveal (Season 1, Episode 4) - Farm to Table

MIT Center for Sustainability Science and Strategy
Podcast: Climate Reveal
PostNovember 13, 2025

From nanoscale to global scale: Advancing MIT’s special initiatives in ma...

MIT News
Left to right: MIT President Emeritus L Rafael Reif, MIT.nano faculty director Professor Vladimir Bulović, and Ray Stata ’57, SM ’58 view a celebration of Robert Noyce’s life and accomplishments on the MIT.nano digital gallery. Made possible through a gift by Stata, MIT.nano’s cleanroom has been named the Robert N. Noyce (1953) Cleanroom.
PostNovember 6, 2025

Where climate meets community

MIT School of Humanities, Arts, and Social Sciences
The Living Climate Futures Lab is made up of faculty and researchers from across MIT. Together, they are exploring the human impact of climate change.

MIT Climate News in Your Inbox

 
 

MIT Groups Log In

Log In

Footer

  • About
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Contact
MIT Climate Project
MIT
Communicator Award Winner
Communicator Award Winner