Skip to main content
Climate
Search

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
MIT

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
PostMay 9, 2023

This abundant material could unlock cheaper batteries for EVs

Electric Vehicle manufacturing plant
Photo Credit
IMAGINECHINA VIA AP IMAGES

Move over, lithium—there’s a new battery chemistry in town.

Lithium is currently the ruler of the battery world, a key ingredient in the batteries that power phones, electric vehicles, and even store energy on the electrical grid.

But as concerns about the battery supply chain swell, scientists are looking for ways to cut down on battery technology’s most expensive, least readily available ingredients. There are already options that reduce the need for some, like cobalt and nickel, but there’s been little recourse for those looking to dethrone lithium.

Over the past several months, though, battery companies and automakers in China have announced forays into a new kind of battery chemistry that replaces lithium with sodium. These new sodium-ion batteries could help push costs down for both stationary storage and electric vehicles, if the technology can meet the high expectations that companies are setting.

Read the full story at MIT Technology Review.

by MIT Technology Review
Topics
Batteries, Storage & Transmission
Industry & Manufacturing
Cars

Related Posts

PostOctober 15, 2025

Why some quantum materials stall while others scale

MIT News
MIT researchers have developed a system for evaluating the scale-up potential of quantum materials. Their data-driven framework combines a material’s quantum behavior with its cost, supply chain resilience, environmental footprint, and other factors.
PostOctober 8, 2025

How to reduce greenhouse gas emissions from ammonia production

MIT Energy Initiative
MIT researchers have proposed an approach for combined blue-green ammonia production that minimizes waste products and, when combined with some other simple upgrades, could reduce the greenhouse emissions from ammonia production by as much as 63 percent, compared to the leading “low-emissions” approach being used today.
PostOctober 6, 2025

Report: Sustainability in supply chains is still a firm-level priority

MIT News
A new report by MIT researchers finds corporations are still very much seeking sustainability advances in their supply chains — but many need to improve the business metrics they use in this area.
PostOctober 2, 2025

A simple formula could guide the design of faster-charging, longer-lasting ...

MIT News
An artist's depiction of lithium ions moving from an electrolyte solution to a cobalt-oxide electrode, with color-coded spheres representing the different chemical constituents.

MIT Climate News in Your Inbox

 
 

MIT Groups Log In

Log In

Footer

  • About
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Contact
MIT Climate Project
MIT
Communicator Award Winner
Communicator Award Winner