Skip to main content
Climate
Search

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
MIT

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
PostJanuary 29, 2020

Powering the planet

Before Fikile Brushett wanted to be an engineer, he wanted to be a soccer player. Today, however, Brushett is the Cecil and Ida Green Career Development Associate Professor in the Department of Chemical Engineering. Building 66 might not look much like a soccer field, but Brushett says the sport taught him a fundamental lesson that has proved invaluable in his scientific endeavors.

“The teams that are successful are the teams that work together,” Brushett says.

That philosophy inspires the Brushett Research Group, which draws on disciplines as diverse as organic chemistry and economics to create new electrochemical processes and devices.

 

As the world moves toward cleaner and sustainable sources of energy, one of the major challenges is converting efficiently between electrical and chemical energy. This is the challenge undertaken by Brushett and his colleagues, who are trying to push the frontiers of electrochemical technology.

Brushett’s research focuses on ways to improve redox flow batteries, which are potentially low-cost alternatives to conventional batteries and a viable way of storing energy from renewable sources like wind and the sun. His group also explores means to recycle carbon dioxide — a greenhouse gas — into fuels and useful chemicals, and to extract energy from biomass.

In his work, Brushett is helping to transform every stage of the energy pipeline: from unlocking the potential of solar and wind energy to replacing combustion engines with fuel cells, and even enabling greener industrial processes.

“A lot of times, electrochemical technologies work in some areas, but we'd like them to work much more broadly than we've asked them to do beforehand,” Brushett says. “A lot of that is now driving the need for new innovation in the area, and that's where we come in.”

by MIT News
Topics
Energy

Related Posts

PostJune 17, 2025

Closing in on superconducting semiconductors

Plasma Science and Fusion Center
New research demonstrates a superconducting diode circuit that could streamline power delivery in ultra-cold quantum systems.
PostJune 11, 2025

A vision for transportation resilience in the energy transition

MIT Center for Sustainability Science and Strategy
Rethinking resilience of low-carbon transportation
PostJune 10, 2025

Recovering from the past and transitioning to a better energy future

MIT Energy Initiative
Emily Carter (right), the Gerhard R. Andlinger Professor in Energy and the Environment at Princeton University, explained how climate change mitigation must include transformation, intervention, and adaptation strategies. William Green, director of the MIT Energy Initiative, moderated the discussion.
PostJune 9, 2025

New facility to accelerate materials solutions for fusion energy

Plasma Science and Fusion Center
The Schmidt Laboratory for Materials in Nuclear Technologies (LMNT), made possible by a group of donors led by Eric and Wendy Schmidt, will be housed at MIT’s Plasma Science and Fusion Center and use a compact cyclotron to accelerate the testing of materials for use in tomorrow’s commercial fusion power plants.

MIT Climate News in Your Inbox

 
 

MIT Groups Log In

Log In

Footer

  • About
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Contact
MIT Climate Project
MIT
Communicator Award Winner
Communicator Award Winner