Skip to main content
Climate
Search

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
MIT

Main navigation

  • Climate 101
    • What We Know
    • What Can Be Done
    • Climate Primer
  • Explore
    • Explainers
    • Ask MIT Climate
    • Podcast
    • For Educators
  • MIT Action
    • News
    • Events
    • Resources
  • Search
PostDecember 15, 2021

New visions for better transportation

MIT Professor Thomas Magnanti
Photo Credit
Courtesy of Singapore University of Technology and Design
Peter Dizikes

We typically experience transportation problems from the ground up. Waiting for a delayed bus, packing ourselves into a subway car, or crawling along in traffic, it is common to see such systems struggling at close range.

 

Yet sometimes transportation solutions come from a high-level, top-down approach. That was the theme of the final talk in MIT’s Mobility Forum series, delivered on Friday by MIT Professor Thomas Magnanti, which centered on applying to transportation the same overarching analytical framework used in other domains, such as bioengineering.

 

Magnanti’s remarks focused on a structured approach to problem-solving known as the 4M method — which stands for measuring, mining, modeling, and manipulating. In urban transportation planning, for instance, measuring and mining might involve understanding traffic flows. Modeling might simulate those traffic flows, and manipulating would mean engineering interventions: tolls, one-way streets, or other changes.

 

“These are four things that interact quite a bit with each other,” said Magnanti, who is an Institute Professor — MIT’s highest faculty distinction — and a professor of operations research at the MIT Sloan School of Management. “And they provide us with a sense of how you can gather data and understand a system, but also how you can improve it.”

 

Magnanti, a leading expert in operations research, pointed out that the 4M method can be applied to systems from physics to biomedical research. He outlined how it might be used to analyze transportations-related systems such as supply chains and warehouse movements.

 

In all cases, he noted, applying the 4M concept to a system is an iterative process: Making changes to a system will likely produce new flows — of traffic and goods — and thus be subject to a new set of measurements.

 

“One thing to notice here, once you manipulate the system, it changes the data,” Magnanti observed. “You’re doing this so you can hopefully improve operations, but it creates new data. So, you want to measure that new data again, you want to mine it, you want to model it again, and then manipulate it. … This is a continuing loop that we use in these systems.”

 

Magnanti’s talk, “Understanding and Improving Transportation Systems,” was delivered online to a public audience of about 175 people. It was the 12th and final event of the MIT Mobility Forum in the fall 2021 semester. The event series is organized by the MIT Mobility Initiative, an Institute-wide effort to research and accelerate the evolution of transportation, at a time when decarbonization in the sector is critical.

 

Other MIT Mobility Forum talks have focused on topics such as zero-environmental-impact aviation, measuring pedestrian flows in cities, autonomous vehicles, the impact of high-speed rail and subways on cities, values and equity in mobility design, and more.

 

Overall, the forum “offers an opportunity to showcase the groundbreaking transportation research occurring across the Institute,” says Jinhua Zhao, an associate professor of transportation and city planning in MIT’s Department of Urban Studies and Planning, and director of the MIT Mobility Initiative.

 

The initiative has held 39 such talks since it launched in 2020, and the series will continue again in the spring semester of 2022.

 

One of the principal features of the forum, like the MIT Mobility Initiative in general, is that it “facilitates cross-disciplinary exchanges both within MIT and without,” Zhao says. Faculty and students from every school at MIT have participated in the forum, lending intellectual and methodological diversity to a broad field.

 

For his part, Magnanti, who is both an engineer and operations researcher by training, embraced that interdisciplinary approach in his remarks, fielding a variety of audience questions after his talk, about research methods and other issues. Magnanti, who served from 2009 to 2017 as the founding president of the Singapore University of Technology and Design (with which MIT has had research collaborations), noted that the setting can heavily influence transportation research and progress.

 

In Singapore, he noted, “They measure everything. They measure how people access the subway … and they use their data.” Of course, Singapore’s status as a city-state of modest size, among other factors, makes comprehensive transportation planning more feasible there. Still, Magnanti also noted that the infrastructure bill recently passed by the U.S. federal government is “going to provide lots of opportunities” for transportation improvements.

 

And in general, Magnanti added, one of the best things academic leaders and research communities can do is to “continue to create a sense of excitement. Even when things are tough, the problems are going to be interesting.”

by MIT News
Topics
MIT Action
Transportation
Air Travel
Public Transportation

Related Posts

PostJune 11, 2025

A vision for transportation resilience in the energy transition

MIT Center for Sustainability Science and Strategy
Rethinking resilience of low-carbon transportation
PostJune 4, 2025

Day of Climate inspires young learners to take action

MIT Open Learning
Jaylen Brown speaks on the importance of climate and climate action for Day of Climate at the MIT Museum.
PostJune 3, 2025

Study shows making hydrogen with soda cans and seawater is scalable and sus...

MIT News
MIT engineers have developed a new aluminum-based process to produce hydrogen gas, that they are testing on a variety of applications, including an aluminum-powered electric vehicle, pictured here.
PostMay 28, 2025

MIT D-Lab students design global energy solutions through collaboration

MIT News
Students in the D-Lab course 2.651 / EC.711 designed an egg incubator system for rural poultry farmers in Cameroon. From left to right: Lilly Heilshorn, Maeve McGinnis, Jamel Merritt, and Gracie Goll.

MIT Climate News in Your Inbox

 
 

MIT Groups Log In

Log In

Footer

  • About
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Contact
MIT Climate Project
MIT
Communicator Award Winner
Communicator Award Winner