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Executive Summary  
 
The Energy Act of 2020 calls for the U.S. Department of Energy to make available to the public 
an update to Lawrence Berkeley National Laboratory’s prior study entitled United States Data 
Center Energy Usage Report (2016). This report, designed to meet that Congressional request, 
estimates historical data center electricity consumption back to 2014, relying on previous 
studies and historical shipment data. This report also provides a scenario range of future 
demand out to 2028 based on new trends and the most recent available data. Figure ES-1 
(below) provides an estimate of total U.S. data center electricity use including servers, storage, 
network equipment, and infrastructure from 2014 through 2028.  
 

 
 
Figure ES-1. Total U.S. data center electricity use from 2014 through 2028. 
 
As Figure ES-1 shows, U.S. data center annual energy use remained stable between 2014–
2016 at about 60 TWh, continuing a minimal growth trend observed since about 2010. In 2017, 
the overall server installed base started growing and Graphic Processing Unit (GPU)-
accelerated servers for artificial intelligence (AI) became a significant enough portion of the 
data center server stock that total data center electricity use began to increase again, such that 
by 2018 data centers consumed about 76 TWh, representing 1.9% of total annual U.S. 
electricity consumption. U.S. data center energy use has continued to grow at an increasing 
rate, reaching 176 TWh by 2023, representing 4.4% of total U.S. electricity consumption.  
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With significant changes observed in the data center sector in recent years, owing to the rapid 
emergence of AI hardware, total data center energy use after 2023 is presented as a range to 
reflect various scenarios. These scenarios capture ranges of future equipment shipments and 
operational practices, as well as variations in cooling energy use. The equipment variations are 
based on the assumed number of GPUs shipped each year, which depends on the future GPU 
demand and the ability of manufacturers to meet those demands. Average operational 
practices for GPU-accelerated servers represent how much computational power, and how 
often AI hardware in the installed base is used, to meet AI workload demand. Cooling energy 
use variations are based on scenarios in cooling system selection type and efficiency of those 
cooling systems, such as shifting to liquid base cooling or moving away from evaporative 
cooling. Together, the scenario variations provide a range of total data center energy estimates, 
with the low and high end of roughly 325 and 580 TWh in 2028, as shown in Figure ES-1. 
Assuming an average capacity utilization rate of 50%, this annual energy use range would 
translate to a total power demand for data centers between 74 and 132 GW. This annual 
energy use also represents 6.7% to 12.0% of total U.S. electricity consumption forecasted for 
2028. 
 
Historically, data center electricity use increased substantially from 2000–2005, roughly 
doubling during that period. During the early and mid-2010s, a shift from on-premise data 
centers to colocation or cloud facilities helped enable efficiency improvements that allowed data 
center electricity use to remain nearly constant at a time when the data center industry grew 
significantly, with a large expansion of data center services. The efficiency strategies that 
allowed the industry to avoid increased energy needs during this period included improved 
cooling and power management, increased server utilization rates, increased computational 
efficiencies, and reduced server idle power.  
 
While many of these efficiency strategies continue to provide significant energy efficiency 
improvements in data center design and operation, the expansion of data center services into 
areas that require new types of hardware has ended the era of generally flat data center energy 
use. Most notably, the rapid growth in accelerated servers has caused current total data center 
energy demand to more than double between 2017 and 2023, and continued growth in the use 
of accelerated servers for AI services could cause further substantial increases by the end of 
this decade. The current and possible near-future surge in energy demand highlights the need 
for future research to understand the early-stage, rapidly changing AI segment of the data 
center industry and identify new efficiency strategies to minimize the resource impacts of this 
growing and increasingly significant sector in our economy.  
 
Areas of future research identified in this report include benchmarking initiatives, collaborations 
with electric utilities, and technology development, all of which would be furthered by greater 
transparency in data center energy use, as the lack of data availability significantly limits the 
analysis in this report. The estimates in this report are based on a “bottom-up” energy use 
model that calculates total electricity use from an installed base of data center equipment.  This 
method avoids overestimation that can be caused by tracking data center load for projects that 
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have not yet selected a power provider, but requires many inputs and assumptions developed 
from limited publicly available data, proprietary market analyst data, and review by industry 
representatives and stakeholders. The lack of direct energy data available in a sector with 
rapidly evolving technologies limits the analysis in this report, especially when trying to 
understand and estimate future energy demand scenarios. 
 
The results presented here indicate that the electricity consumption of U.S. data centers is 
currently growing at an accelerating rate. Figure ES-1 shows a compound annual growth rate of 
approximately 7% from 2014 to 2018, increasing to 18% between 2018 and 2023, and then 
ranging from 13% to 27% between 2023 and 2028. This surge in data center electricity 
demand, however, should be understood in the context of the much larger electricity demand 
that is expected to occur over the next few decades from a combination of electric vehicle 
adoption, onshoring of manufacturing, hydrogen utilization, and the electrification of industry 
and buildings. Research initiatives are needed not merely to identify strategies to meet data 
centers’ future energy needs, but also to help stakeholders use this relatively near-term 
electricity demand for data centers as an opportunity to develop the leadership and strategic 
foundation for an economy-wide expansion of electricity infrastructure.  
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1. Introduction 
In the United States, demand for computation has increased as the economy has digitalized. 
Over the last decade, the rise of expanded computational services has been accompanied by 
increased demand for associated cloud computing infrastructure. The data center industry’s 
improving operational efficiency during this period initially held U.S. computing-related energy 
use flat while servicing greater demand (Shehabi et al. 2016; Masanet et al. 2020). The 
expansion of data center services into areas that require new types of hardware, such as 
artificial intelligence (AI) and cryptocurrency, is projected to break this trend, contributing to 
growth in American electricity consumption (IEA 2024). The exact magnitude of this growth 
remains a subject of debate due to the heterogeneity of estimation methodologies. These 
methodologies can be broadly categorized into three main approaches: bottom-up, top-down, 
and extrapolation (Mytton and Ashtine 2022). Analyzing these approaches will shed light on the 
strengths and limitations of each for accurate data center energy use estimation. 
 
Bottom-up modeling delves deeply into the specificity of a data center. Using this method 
requires the meticulous gathering of data on individual components, such as the power draw of 
servers and a facility’s overall efficiency. This information is then combined with estimates of 
equipment shipment and the number of servers already deployed (i.e., the “installed base”) to 
calculate total energy consumption. This method provides insights into individual components 
of data centers and their energy use, allowing for more granular analysis. While this approach 
approximates a physical model of the data center, bottom-up modeling has limitations. It is 
heavily reliant on the accuracy of the data regarding installed base, equipment sales, and 
shipments, as well as accurate predictions of technological changes. Bottom-up approaches 
necessarily require knowledge of the underlying installed equipment base. While existing 
contracts for future sales mean near-term shipment forecasts are reasonably reliable, bottom-
up methods cannot estimate at the same level of accuracy once they become projections, 
owing to variations in equipment characteristics and operation, and require periodic updates to 
reflect such changes in their foundational data (Malmodin et al. 2024). 
 
Top-down modeling takes a broader view and leverages existing data from governments or 
industry organizations. This approach analyzes regional or national energy consumption totals, 
often derived from surveys and statistics. Aggregated estimates of service or product demand 
are then used to derive the required physical infrastructure to supply that demand. In a review 
of 46 studies on data center energy estimation, Mytton and Ashtine (2022) found this method to 
be less common, with only one example of an exclusively top-down approach found in their 
analysis. 
 
The relative ease and low cost of implementation are clear advantages of a top-down model, as 
illustrated by an example in Malmodin et al. (2014). They utilized site-level energy 
measurements from various locations in Sweden, including seven large data/telecom centers, 
comprising measured service demand from 15 offices, 58 stores, and approximately 11,000 
fixed and mobile sites. This approach was paired with bottom-up equipment statistics to 
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extrapolate a global estimate. This approach allows for the use of defined values, including the 
total measured network data volumes and total energy consumption values from electricity 
meters, which allows for accuracy but only at a very high level of aggregation. Additionally, this 
approach encounters difficulties in understanding the impact of technology change compared to 
bottom-up approaches, due to a limited breakdown of data center components that make up 
the overall estimate. Functionally, top-down approaches interpolate the hardware stack based 
on service energy use. 
 
The last approach, extrapolation, builds on existing estimates (either bottom-up or top-down) to 
forecast future energy use. Extrapolation begins with a base value of data center energy use 
that is then extrapolated, either using a projected annual growth rate or the basis of a service 
demand indicator, when normalized to a unit of service such as information technology (IT) 
traffic (Lei and Masanet 2021). This method projects future energy consumption based on 
energy intensity per unit of transmitted data by developing assumptions about overall market 
growth and energy efficiency improvements for future projects. While extrapolation methods are 
simpler and rely on less data than other methods, they rely heavily on the accuracy of the 
bottom-up or top-down models used, as well as assumptions about future market trends 
(Mytton and Ashtine 2022). These extrapolative studies are highly sensitive to errors in their 
input analyses, as extrapolation of those errors functionally compounds them. While they offer 
a useful benchmark for future demand, these methods must be used judiciously. A summary of 
the three main approaches to modeling data center energy use can be seen in Table 1.1.  
 
Table 1.1.  Characteristics of the Three Main Approaches to Estimating Data Center Energy Use: 
Bottom-Up, Top-Down, and Extrapolation 
 Bottom-Up Top-Down Extrapolation 
Key Inputs • Equipment 

specification, e.g., 
server power draw  

• Data center 
infrastructure 
characteristics, e.g., 
power usage 
effectiveness (PUE)  

• Installed 
base/equipment 
shipment values  

• Government or 
organization 
measurements, e.g., 
total data volume 
and total operator 
energy consumption 

• Baseline year 
values (from 
bottom-up or top-
down models) 

• Growth rate (which 
may factor in 
energy efficiency 
improvements and 
growth in data 
volumes or 
customer numbers) 

Assumptions for 
Future Growth 

• Future equipment 
shipment values 

• Future equipment 
trends, e.g., power 
density, graphics 
processing units 
(GPUs), liquid cooling 

• Energy efficiency 
improvements, e.g., 

• Relationship between 
demand and energy 
consumption, usually 
data volume 

• Future customer 
growth, e.g., the 
number of internet 
provider customers 

• Relationship 
between demand 
and energy 
consumption, 
usually data volume 

• Energy efficiency 
improvements, e.g., 
PUE improvements 
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PUE improvements 
or server power draw 
improvements 

• Energy efficiency 
improvements 
(usually broad 
because of the lack of 
specific breakdowns 
such as PUE or 
server power)  

or server power 
draw improvements 

Main Limitations • Availability of 
installed base and 
server equipment 
values 

• Ability to project 
trends in equipment 
types and energy 
efficiency 
improvements more 
than a few years into 
the future  

• Accuracy and 
availability of 
organization data 

• Ability to project 
future trends in 
energy efficiency  

• Correlation between 
inputs, e.g., data 
consumption per 
customer  

• Correlation between 
inputs, e.g., energy 
consumption per 
unit of data 

• Ability to project 
future trends in 
energy efficiency  

Examples • Masanet et al. (2020) 
• Shehabi et al. (2016) 
• Malmodin et al. 

(2014) 
• Koomey (2011) 
• Masanet et al. (2011) 
• Malmodin et al. 

(2010) 
• Brown, et al. (2007) 
• Koomey (2007) 

• Malmodin et al. 
(2014) 

• Belkhir (2018)  
• Andrae (2017) 
• Andrae and Edler 

(2015) 

Table adapted from “Sources of data center energy estimates: A comprehensive review” (Mytton and Ashtine 2022). 
 
 
Bottom-up models have historically shown more modest growth in data center energy use. In a 
2007 report to Congress (Brown et al. 2007), the U.S. data center sector was estimated to have 
consumed about 61 billion kilowatt hours (kWh) in 2006, equivalent to 1.5% of total U.S. 
electricity consumption, for a total electricity cost of about $4.5 billion (in 2006 dollars). In a 
follow-up report (Shehabi et al. 2016), the data center sector was estimated to have consumed 
about 70 billion kWh in 2014, equivalent to 1.8% of total U.S. electricity consumption. This 
estimated level of electricity consumption is comparable to the amount of electricity consumed 
by approximately 6.7 million average U.S. households.  
 
While these estimates paint a picture of a gradual rise in data center energy use, other 
projections suggest a much more dramatic scenario. According to Reuters, nine of the 10 
largest U.S. electric utilities said data centers would be the main source of customer energy 
demand growth, stemming from technologies like generative AI (Kearney 2024). The electric 
utility Southern Company projects data centers will increase its electricity sales by 6% each 
year from 2025 to 2028, up from its prior predicted growth rate of 1–2%. Financial and industry 
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analytics firms share similar findings: Boston Consulting Group estimates that data center 
energy use could triple from 2.5% of U.S. electricity consumption to 7.5% by 2030 (Lee 2023). 
Companies like Georgia Power, a subsidiary of Southern Company, have drastically increased 
their near-term load growth predictions based on growth from data centers (Halper 2024). 
However, data center operators and federal agencies are seeking greater visibility into the 
company’s heavily redacted resource planning filings, criticizing the utility’s approach to load 
forecasting. Microsoft challenged Georgia Power’s modeling methods, highlighting concerns 
that the model is undervaluing renewable energy while overestimating data center load for 
projects that have not yet selected Georgia Power as their provider (Allsup 2024).  
 
Utilities consistently emphasize data centers, and specifically AI, as drivers of projected 
increases in electricity demand. Seven of eight utility forecasts highlighted AI as a key driver of 
demand growth (Wilson and Zimmerman 2023). Strategic consulting and financial analytics 
firms consistently predict expanded demand (Avelar and Donovan 2023; Anderson, Sweeney, 
and Canonica 2023). It is noteworthy that in parallel with predicted increases in AI-related 
computational demand, specialized microelectronics industry analysts have made more 
reserved estimates of short- and medium-term load growth due to greater emphasis on 
manufacturing. Industry analytics firm SemiAnalysis projected AI would account for 4.5% of 
2030 electricity use in its base case estimate (Patel, Nishball, and Ontiveros 2024). Institutions 
specializing in projecting energy use (IEA 2017) or IT power specifically (Nelson 2022) have 
also updated previous analyses to incorporate AI investment (IEA 2024a; IEA 2024b; Avelar 
and Donovan 2023). Plots of both historical academic estimates and associated projections of 
data center energy use in the United States and globally can be seen in Figures 1.1 and 1.2.  
 
We should not dismiss these projections out of hand, as the most extreme cases would 
constitute a significant stress on electrical infrastructure. Many underlying models on which 
financial analytics firms build these projections are proprietary or methodologically opaque 
(Goldman Sachs Research 2024; Jeff Brown 2024; Bloomberg 2024). Others are often 
extrapolations from utility load growth forecasts based on market research demand projections 
(Aljbour et al. 2024). While not meaningless, historical utility demand forecasts consistently 
overestimate both peak and average demand (Carvallo et al. 2018). Rigorous models of data 
center energy use are needed to adequately calibrate both future investment and public 
concern.  
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Figure 1.1.  Academic and industry historical estimates of U.S. data center energy use.  
Plot also includes future projections from those sources. Historical estimates are shown with solid lines, 
and projections are shown with dashed lines.  
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Figure 1.2.  Academic and industry historical estimates of global data center energy use.  
Plot also includes future projections from those sources. Historical estimates are shown with solid lines, 
and projections are shown with dashed lines.  
 
 
The Energy Act of 2020 (U.S. Congress 2020) calls for the Department of Energy to make 
available to the public an update to the United States Data Center Energy Usage Report from 
Lawrence Berkeley National Laboratory (Berkeley Lab), which estimated historical data center 
electricity consumption back to 2000 (Shehabi et al. 2016), hereafter referred to as “the 2016 
report”.  This analysis is designed to meet this Congressional request to update the 2016 report 
and builds on the bottom-up, technology-based modeling approach developed by Koomey, 
Masanet, and coauthors (Capuccio and Craver 2007; Koomey 2007; 2008; Koomey and 
Masanet 2021; Masanet et al. 2011; Shehabi et al. 2018). Bottom-up methods are recognized 
for their accuracy and robustness, stemming from their reliance on meticulous data collection 
regarding the IT equipment inventory within data centers (Lei, Masanet, and Koomey 2021). 
While limitations exist in using this approach, top-down estimates instead interpolate 
backwards from service demand, which has become increasingly uncoupled from electricity 
use in the IT sector (Malmodin and Lundén 2016). This study seeks only to estimate the direct 
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energy use by data centers, not any underlying economic factors or transitions that may 
substantially change the underlying environment and technological base.  
 
The remainder of the report is organized as follows. Section 2 describes the methodology 
employed in this study. Section 3 describes the categories and subcategories of IT equipment 
modeled in this study, including the power consumption estimates for various equipment types, 
how those estimates are evolving over time, and the calculation and results for the installed 
base of IT equipment. Section 4 then describes the different data center types considered in 
this study, how IT equipment is allocated across those space types, and the modeling of non-IT 
power and water demands (namely from the cooling systems) to estimate site power usage 
effectiveness (PUE) and water usage effectiveness (WUE). Section 5 then presents the 
resulting estimates for total electricity consumption, as well as the emissions and water 
footprints considering the source energy of regional electricity grids. Section 6 provides a 
separate analysis for cryptocurrency. Section 7 summarizes findings, highlights limitations, and 
provides suggestions for future research. 
 

2. Methodology Overview 
This report utilizes a “bottom-up” model, with data and assumptions starting at the equipment 
level being scaled up and aggregated to generate total results. Figure 2.1 shows the overall 
structure of the model, including input data sources and the major units of analysis. As shown 
in the second column, the model characterizes IT equipment as either servers, storage, or 
networking equipment, and it uses shipment data to generate estimates for the “installed base” 
of equipment in each year. The installed base represents the quantity of equipment that is 
being operated in a given year; these values are distinguished by subcategories of equipment, 
the type of data center the equipment is in, and other characteristics. Each installed base has a 
complementary set of assumptions regarding the power draw of the installed equipment. Like 
the installed base, these wattage assumptions might vary across equipment and data center 
types. For servers, there is an underlying model of power draw that leads to this assumption, 
considering rated power, maximum power, server operational time, and idle power to estimate 
annual average wattages.  
 
Adding up the product of installed base and wattage across each equipment category leads to 
total estimates for annual IT equipment electricity consumption. This value can then be 
multiplied by modeled PUE and WUE values to estimate total on-site electricity and water 
demand across the data centers. The PUE and WUE models consider assumptions for the 
types of cooling systems present at different types of data centers, as well as the locations of 
data centers and therefore the average surrounding weather conditions. These assumptions 
are paired with the results from a detailed, physics-based model of cooling electricity demand, 
which also accounts for ancillary electrical demands such as lighting and uninterruptible power 
supplies (UPS) to estimate the average PUE and WUE for different types of data centers.  
 
Finally, these on-site demands are combined with models of the carbon and water intensity of 
the electrical grid to estimate the total greenhouse gas (GHG) footprint and water consumption 
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related to data centers.  
 

 
Figure 2.1.  Flow chart for the data center electricity model used in this study. 
 
The modeling framework described above is very similar to the model employed in the 2016 
U.S. data center energy use study (Shehabi et al. 2016). Key updates include extensive 
quantification and characterization of accelerated servers used for AI applications, consideration 
of various cooling system types and outdoor temperatures when modeling PUE and WUE, 
calculation of carbon and water footprint of electricity consumed based on local grid mixes, and 
an estimate of electricity demand from cryptocurrency mining. Details on each of these 
modeling advancements will be given in the remaining sections of the report.  
 

Historical Best Estimates and Future Scenarios 
Total electricity, water, and emissions associated with U.S. data center operation are estimates 
for the period 2014–2028. The years prior to 2024 are historical estimates and, while there are 
significant variations in the equipment and operational practices of that equipment across data 
centers, the inputs and assumptions for the core modules during this historical period 
characterize best estimates of average representative values based on collected data and 
stakeholder feedback during the review process. Beginning in 2024, estimates are based on 
forecasts for equipment shipments and predictions of future operational practices, which are 
inherently less certain than historical estimates. This uncertainty is magnified with the recent 
rapid growth in accelerator shipments, which significantly affect total electricity use values given 
the current and anticipated power demand of GPU chips. This report addresses that uncertainty 
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by presenting future electricity demand as a range that represents different electricity demand 
scenarios. The scenarios are based on possible variations in future accelerator shipments, the 
operational time for AI servers, the operational power draw of AI servers, and the efficiency of 
specific data center cooling systems. The specific variation and rationale for those variations are 
described in the corresponding sections in the following section.  
 

3. IT Equipment Installed Based and Power Draw 
Server Types 
Servers are split into two main categories: conventional and AI specialized servers. 
Conventional servers are those with configurations of processing, memory, and networking 
equipment that are designed for serving legacy data center workloads. While there is significant 
variation in the configuration, operation, and power consumption of these servers, the primary 
driver of the power consumption is the number of central processing units (CPUs) present in 
the device. Therefore, we break out conventional servers into categories of single processor, 
dual processor, and multiple processor count. Traditionally, the vast majority of servers 
deployed at data centers were dual processor. In more recent years, a shift to single 
processor servers has occurred, with several “blade”-style servers being installed in a chassis 
(e.g., Facebook’s Yosemite design [Haken et al. 2021]). Multiple processor count servers are 
those with four or more CPUs, with some machines having 32 or even more CPUs; these 
servers are typically used in scientific computing, big data processing, or content delivery 
applications. They make up a small portion of the installed base in terms of the number of 
servers, but their total electricity demand can be substantial. When modeling the power draw of 
these machines, we include additional specificity in the CPU count (4 vs. 8 vs. 16 CPUs), but 
we group these servers together as multiple processor count (MPC) servers when presenting 
results. 
 
AI specialized servers are further categorized as “AI accelerated” and “AI non-accelerated,” 
based on whether or not accelerators are present. Accelerators are additional processing units 
that complement the CPU function and allow the server to more quickly process large 
quantities of calculations in parallel. The most common accelerator type is the graphics 
processing unit (GPU), though other types of accelerators (e.g., ASIC, TPU) are growing in 
popularity. AI non-accelerated servers are two-processor servers that are dedicated to AI 
workloads but do not contain any accelerators. Compared to conventional dual processor 
servers, these machines typically have more robust memory and networking configurations and 
use higher-power CPUs. The types of data centers where they are installed and the way in 
which they are operated can also differ from conventional server deployments. AI accelerated 
servers contain two or more accelerators and are dedicated to AI workloads, such as training 
and inference for large language models. Each server includes two CPUs, modeled after the 
NVIDIA DGX line of servers. Within the AI accelerated category, servers are split into three 
groups based on the number of GPUs shipped with the servers (either 2, 4, or 8). Larger-scale 
AI server configurations have been announced, namely the 72-GPU rack-scale GB200 from 
NVIDIA (NVIDIA n.d.-a), but these are not yet being deployed and the power draw of these 
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systems is expected to scale close to linearly from 8-GPU machines. 

Server Power Draw 
The actual electricity demand for a given server fluctuates throughout the day depending on the 
amount of work it is doing. In the past, these fluctuations were minimal, as servers consumed 
electricity near their maximum levels even when sitting idle, but as the power scaling ability of 
servers has improved, it is important to capture these fluctuations. Further, it is critical to note 
that servers rarely, if ever, actually draw the full wattage for which they are rated on 
specification sheets. These “rated power” levels are used to inform the design of power supply 
and electrical systems and therefore must conservatively include the absolute maximum 
wattage of every server component running at the exact same time. Ultimately, this creates 
several wattage levels to be considered when analyzing server electricity demand: 

• Rated power: the absolute maximum possible power draw of the server, as one 
might find on an equipment specification sheet. This is generally determined by 
summing up the thermal design power (TDP) of every component within the 
machine. 

• Maximum power: the observed power draw when the server is operating at its 
maximum computational workload. This can be found via testing benchmarks such 
as SPEC (SPEC n.d.) or by metering in-use servers for a sufficient amount of time 
such that maximum workloads are likely to have been achieved and then finding the 
maximum power draw. 

• Operational power: the observed power draw when the server is operating in a 
“typical” workload mode. This term is most relevant for AI training servers that have a 
relatively predictable power draw when they are doing a training run. It is less 
relevant for conventional servers that are dealing with continuously variable 
workloads.  

• Idle power: the power draw when a server is sitting idle with no computational 
demand. Lower power draws are possible with enhanced power saving settings such 
as “deep sleep” modes, but here we consider idle power as when the server is on 
and in active standby mode but not completing any computations. 

• Annual average power: the average power draw over an entire year, considering all 
operating modes and power levels. 

 
For this study, we aim to understand the total annual electricity consumption of servers. 
Therefore, the annual average power is our metric of interest. Average power draw is 
calculated in our model by approximating all of the server’s operations as one of two states: 
operational or average. This gives us the following equation for calculating average power: 
 

𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎  =  𝑃𝑃𝑜𝑜𝑜𝑜 ⋅ 𝑇𝑇𝑜𝑜𝑜𝑜  +  𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ⋅ 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
 
Where P represents a power draw (wattage) metric and T represents the fraction of time 
throughout the year that the server is in a given state. For AI servers, particularly those used for 
training, this binary representation is reasonably representative of their behavior throughout the 
year: they are either conducting a training run, or they are not. The power metrics used in the 
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equation are straightforward and as defined above, and the operational time metric is the 
fraction of time we expect servers to be actively conducting training runs (idle time is then 1-
operational time).  
 
For conventional servers, the operational state (and therefore power demand) is much more 
varied, but our choice of metrics is such that this formulation is mathematically equivalent to the 
method used in the prior report. We use the maximum power draw of the server to represent 
the operational power and use an expected average utilization level as the operational time 
metric. This gives us an average power draw that is equivalent to a linear interpolation between 
idle and max power, at a point between those two power levels that is representative of their 
average workload level. In other words, if we think a server is operating at 30% workload on 
average, we will end up with an average power that is 30% of the way between idle and 
maximum power. The assumptions for operational power, idle power, and operational time are 
described in the following subsections. 

Server Operational Wattage 

Conventional Servers 
Figure 3.1 shows the assumed power draw of operating conventional (non-AI) servers based 
on the year and number of processors present. The operational power draw for single and dual 
processor servers shipped prior to 2014 is the maximum power for “Volume 1S” and “Volume 
2S+” servers in the previous report (118 and 365 W, respectively). For 2023, the operational 
wattage of dual processor servers is set to 600 W based on the Green Grid Server Energy 
Efficiency Database (SEED) average for that year. Intermediate years between 2015 and 2023 
are linearly interpolated. After 2023, the operational wattage is determined by applying the 
linear growth trend from the SERT database to the 2023 values, ultimately reaching 782 W by 
2028.  
 
While ultimately the average wattage from the SEED was used for the current wattage of 
conventional servers, substantial analysis went into exploring additional data sources and 
understanding the underlying trends and uncertainties in conventional server power draw. 
Initially, conversations with industry analysts suggested that typical dual processor servers 
going into data centers in 2023 had maximum power levels, on average, of 1 kW (or even 
more). Data from the SPEC benchmarking database (SPEC n.d.) supported this trend, with 
average wattages of around 750 W for 2023–2024. Generally, servers in the SPEC database 
are expected to be the most efficient configurations and operational settings possible, so this 
supported an expectation that the average server was at a wattage well above those values. 
However, further analysis of SPEC and SERT data showed that the SPEC servers had 
substantially more cores per CPU than servers in the SERT database (approximately 150 vs. 
50 cores per CPU, on average, respectively). Additional data on core counts obtained from the 
IDC confirmed that, on average, servers being shipped to data centers have core counts more 
in line with the SEED data than the SPEC data. Therefore, the total wattage numbers 
presented in the SPEC database are not only unrepresentative due to their computationally 
efficient configurations, but because they are much more powerful servers than the average. 
While SPEC data still provides numerous valuable insights, we found the SEED data to be 
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more representative of typical servers and therefore used the average wattages found there for 
our modeling. 
 
Single processor server operational wattage is determined by following the same growth trend 
found in SEED, flattening after 2025. Operational wattage for 4 processor count servers is 
assumed to be two times that of dual processor servers, and 8 processor count server 
operational power draw is assumed to be two times that of 4 processor servers. Data from the 
SERT database supports this relative scaling between servers with various processor counts.  
 
An additional category in the data, 16+ processor count servers, represents the remainder of 
the higher performance computing market. In the prior study, these servers were captured in 
the “high-end” category. Data on the wattage of these servers was first analyzed in 2007 by Jon 
Koomey (2007), who created an estimated power draw time series for 2000–2007 based on the 
most popular servers being shipped at that time. In the 2016 report, this trend was extrapolated 
to 2020 with an annual growth rate of 7%. In retrospect, this 13-year extrapolation led to an 
overestimation of the amount of power these servers would consume, with the high-end servers 
reaching 20 kW in 2020. In this study, we use a simple 10-kW power draw assumption for all 
years, as this is in line with the power draw of the most powerful servers on the market today. 
This causes some discrepancies between this study’s pre-2020 estimates and the prior study 
results, which will be discussed further in a later section. 
 

 
 
Figure 3.1.  Operational power draw for conventional servers across the installed base. 
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Figure 3.2.  Distribution of rated power draw for shipped servers. 
 

AI Servers 
For AI servers, the operational power draw is calculated as a fraction of the rated power of the 
servers, which is shown by shipment year in the left panel of Figure 3.3. These values are 
based on the rated power for NVIDIA DGX 8-GPU systems shipped in each year, which are 
then averaged based on the distribution of GPU shipments in each year. For example, if in a 
given year, 25% of shipped GPUS are in the NVIDIA A100 class, with a rated power of 6.5 kW 
(NVIDIA n.d.-b), 25% are in the NVIDIA A2, A40, or L4 class, with a rated server power of 3.4 
kW (Omdia, 2024), 25% are in the NVIDIA H100 class (NVIDIA n.d.-c), with a rated server 
power of 10.2 kW, and 25% are in the B100 class, with a rated power of 12.2 kW (Omdia, 
2024), the resulting average rated power for that year would be about 8 kW (i.e., the weighted 
average of 6.5, 3.4, 10.2, and 12.2). Average rated power for 2020, 2024, and 2028 are shown 
in Figure 3.2. This results in the average rated power numbers by shipment year shown in the 
left panel of Figure 3.3. 
 
For non-accelerated AI servers, we assume that the power draw in 2023 is the 90th percentile 
value of the dual processor server power in the SERT database, then follows same linear trend 
as dual processor servers. We then estimate that, during typical operation, the power draw for 
these servers is 70% of the rated power, leading to the values in the right panel of Figure 3.3. 
This is based on an analysis of measured power data from accelerated servers in workload 
(Newkirk 2024). This analysis found that across both single-node and multi-node AI training 
workloads, 8 H100 GPU nodes averaged 74% of manufacturer rated thermal design power in 
workload. Assuming a heterogeneous mix of workloads, some of which won’t computationally 
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saturate the hardware, we elected a value of 70%. Operational power in the years 2024 to 2028 
is varied between 60% and 80% of the rated power to reflect possible differences in the future 
operation of these servers.  
 

  
Figure 3.3.  Rated power for accelerated servers (left); operational power for accelerated servers 
(right). 
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Accelerated Server Operational 
Parameters  
The energy footprint of artificial intelligence (AI) 
computation differs fundamentally from 
traditional enterprise computing in several key 
aspects that directly impact modeling 
approaches. At its core, AI computation consists 
of massive quantities of parallel matrix 
operations that create distinctive facility-level 
power demands when performed at scale. 
These workloads are highly parallelizable and 
show consistent performance improvements 
with increased computational scale, driving the 
development and deployment of specialized 
hardware infrastructure. 
 
This computational profile has led to a distinctive 
hardware stack dominated by specialized 
accelerators, primarily graphics processing units 
(GPUs) for training workloads. While these 
accelerators perform the bulk of computation, 
they operate as part of complex nodes including 
supervisory central processing units (CPUs), 
memory, and high-bandwidth interconnect. This 
integration means that individual components 
can throttle others, creating characteristic load 
profiles; empirical measurements consistently 
show that even in computationally intensive 
workloads, node-level power demand rarely 
approaches manufacturer rated maximums. 
A crucial distinction exists between training and 
inference workloads. Training involves intensive, 
long-duration computation with relatively 
predictable power draws, typically performed in 
dedicated facilities with specialized hardware. 
This creates opportunities for efficiency 
optimization through facility siting and cooling 
system design. In contrast, inference presents 
more variable loads across a heterogeneous 
hardware mix, making it more challenging to 
model but increasingly important as deployment 
scales. The relationship between inference and 
training energy use continues to evolve as 

models grow in both scale and capability. 
 
The consistent relationship between 
computational scale and AI capability 
improvements suggests that efficiency gains will 
typically be reinvested in larger models rather 
than reducing absolute power demand. 
However, the scale and capital intensity of these 
facilities creates strong incentives for operational 
efficiency, particularly in cooling and power 
delivery systems. These characteristics inform 
our modeling approach: We derive parameters 
from empirical measurements of operational 
systems, while accounting for the distinctive load 
profiles and efficiency characteristics of AI 
computation. 
 
We collected empirical power draw data for AI 
training workloads on a current generation 8-
H100 DGX node in collaboration with 
Brookhaven National Lab (Latif et al. 2024). We 
then integrated these results with open-source 
data from public benchmarking results for 
multinodal training, with summary statistics of 
these workloads shown in table 1 below. Using 
these measurements, we derived a statistical 
estimate of average node power demand in 
training for computationally saturated workloads 
of 7.9 kW or ~78% manufacturer rated power 
(Newkirk 2024). As commercial hardware will be 
running a mixture of workloads at a mixture of 
computational intensity, we parameterized 
annualized workload demand at 70% of node 
rated power. For a more detailed analysis of 
these techniques and a review of the relevant 
literature on AI-related computational demand, 
see Newkirk (2024). One finding from this work 
was the characteristic fluctuation in power 
demand for AI training as compared to more 
conventional HPC workloads, which can be 
especially taxing to grid operators. A plot of a 
characteristic time series for training can be 
seen in Figure 3.4.  
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While training energy use has dominated 
historical analysis of AI's energy footprint due to 
its discrete, measurable nature, inference 
energy consumption presents a more complex 
modeling challenge with greater long-term 
implications. The challenge stems from four 

interacting uncertainties: the energy efficiency of 
inference hardware, the mix of hardware types 
used (from ASICs to GPUs to CPUs), the scale 
and nature of user demand, and the 
characteristics of inference facilities. 

 

 
 
Figure 3.4.  Time series of node-level power demand during Llama-70B training across 8 nodes at 
Sustainable Metal Cloud.  
Each line represents a unique node. The characteristic square-wave pattern of transformer architecture training is 
evident, with regular drops in power demand across all nodes (e.g., at 2:20) corresponding to synchronization points 
and memory access periods. Power drops of individual nodes during compute intensive phases likely correspond to 
throttling as GPUs or nodes await intermediate values from other processors. 
 
 
 
Economic incentives favor widespread model 
deployment to amortize high upfront training 
costs, suggesting inference energy use could 
dramatically exceed training. However, the 
actual energy impact will depend heavily on user 
adoption patterns, hardware evolution, and 
varying workload requirements. This makes 

inference energy use both potentially much 
larger than training and significantly harder to 
model with confidence. Given the modeled 
timeframe and these uncertainties, we 
parameterized inference-related power demand 
as half of that during training. 
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Table 3.1.  Summary Statistics for Each Individual Workload in Our Dataset  
All systems use NVIDIA H100-SXM5-80GB GPUs (8 per node). B = billion parameters, M = million. “Batch” refers to 
the global batch size. For each workload, average power (Pavg), maximum power (Pmax), and standard deviation 
(SD) are reported in kilowatts (kW). Power measurements are per-node, energy values represent total system 
consumption. BNL indicates Brookhaven National Laboratory data, while SMC indicates open-source benchmarking 
data from Sustainable Metal Cloud.  

Workload Pavg 
 (kW) 

Pmax  
(kW) 

SD 
 (kW) 

Arch. Param. Batch 
 (global) 

Nodes Duration IT Energy 
 (kWh) 

SMC - 
GPT3-

175B (64) 

7.67 8.45 0.73 DNN 175B 2048 64 0.95 479.45 

SMC - 
Llama-

70B (64) 

5.92 8.76 1.5 DNN 70B 64 64 0.03 10.78 

SMC - 
Llama-
70B (8) 

7.73 8.73 1.11 DNN 70B 8 8 0.09 5.43 

SMC - 
Llama-
70B (1) 

6.78 7.32 1.05 DNN 70B 8 1 0.5 3.39 

BNL-
Llama-
13B (1) 

7.79 8.42 0.61 DNN 13B 8 1 8 62.36 

SMC - 
ResNet 1 

(8) 

6.36 7.89 1.66 CNN 26M 3200 8 0.07 3.75 

SMC - 
ResNet 2 

(1) 

6.76 6.88 0.29 CNN 26M 3200 1 0.22 1.51 

BNL - 
Resnet 1 

(1) 

4.6 5.02 0.34 CNN 60M 512 1 26.8 123.41 

BNL - 
Resnet 2 

(1) 

5.76 6.48 0.11 CNN 60M 4096 1 5.25 30.15 



   
 

2024 United States Data Center Energy Usage Report 26 

Idle Power 
The method for estimating server idle power varies slightly between AI servers and 
conventional servers. For conventional servers, idle power is calculated as a fraction of 
maximum power that the servers draw during idle periods, while for AI servers, idle power is an 
assumed fraction of the server’s rated power. As shown in Figure 3.5, we assume that 
conventional servers idle at 51% of their maximum power in 2014, dropping to 36% in 2023 and 
27% in 2028. This assumption matches the values from the previous report through 2020, then 
continues the 2014-2020 linear trend through 2028. These values were compared with data 
found in the databases of both SPEC and SEED. The model assumption is above the general 
trend found in the SPEC power database, but roughly in line with SEED. As noted above, 
servers in the SPEC database are understood to be more efficient than the general market, so 
this is in line with those expectations. However, it is notable that the SPEC trend is relatively 
constant, if not increasing, with idle power fractions at 20-25% in recent years. This could imply 
a functional lower bound for idle power, relative to maximum power, that will remain constant 
into the future. Our current model assumption essentially states that the general server market 
will near this lower bound by 2028. However, this may underestimate idle power draw. For AI 
servers, we assume idle power equal to 20% of the server’s rated power over the entire study 
period, based on measurement data provided by Brookhaven National Laboratory (Latif et al. 
2024) of an 8-GPU NVIDIA H100 node, which showed an idle power draw of approximately 
18% of the manufacturer-rated maximum. 
 

 
 
Figure 3.5.  Idle power for conventional servers, as a percentage of maximum operating power. 
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Server Operational Time (Utilization) 
Average server operational time for single, dual, and multiple processor servers varies by 
space type. Following trends in the 2016 report, utilization for conventional servers in all space 
types increases slightly through 2028. Servers in internal and small data centers average 11% 
utilization in 2014, rising linearly to 20% in 2027. Colocation data centers average 21% 
utilization in 2014, rising to 35% in 2027. Hyperscale data centers average 45% in 2014, rising 
to 50% in 2027. AI accelerated and non-accelerated servers doing training are assumed to 
have a constant 80% operational time throughout the whole period, while the same servers 
doing inferencing have a constant 40% operational time (see Figure 3.6). As with the 
operational power, we vary the operational time of training AI servers between 75% and 85%, 
and inference AI servers between 37.5% and 42.5%, from 2024 to 2028, to reflect possible 
differences in the future operation of these servers.  

 
 
Figure 3.6.  Operational time of servers given data center type. 
 

Resulting Annual Average Power  
Resulting average wattage depends on both server type and space type (for operational time). 
Therefore, a wide range of wattages is present in the model. As shown in Figure 3.7, servers 
with 8 GPUs exhibit the steepest increase, surpassing an annual average power of 5 kW by 
2026, while 4-GPU and 2-GPU configurations rise more moderately, peaking above 2 kW and 1 
kW, respectively. In contrast, non-accelerated AI servers and traditional processor-based 
servers experience relatively modest growth, with single and dual processor servers remaining 
the least energy-intensive, below 0.5 kW and 0.8 kW, respectively, by 2026. 
 



   
 

2024 United States Data Center Energy Usage Report 28 

 
 
Figure 3.7.  Aggregate average power draw of various server types across each analysis year. 
 

Server Population 
Total Server Shipments 
Estimates for server installed base are based on IDC’s “Worldwide Quarterly Server Tracker,” 
which contains annual data for historical (2003–2023) and forecasted (2024–2028) server 
shipments (IDC 2024a). Shipment data are described by numerous characteristics, but the 
primary one used in this analysis is socket capability of shipments, representing the number of 
CPUs each server can be equipped with. 
 
The number of servers shipped in the United States was relatively consistent from the mid-
2000s through 2016, ranging from 2.8 to 3.4 million servers per year. After 2016, the number of 
shipped servers grew steadily, surpassing 6.5 million in 2022. Forecasts predict the number of 
shipped servers to grow to over 7.7 million in 2028, an 18% increase over six years. Much of 
the recent and forecasted growth is in 1-socket servers; in 2018, 1-socket servers only 
represented 7% of the shipments, with 89% of servers being in the “2+” socket category. In 
2028, 1-socket servers are expected to be around 30% of shipments, with 2+ socket servers 
representing about 69%.  

AI Accelerated Server Shipments 
The AI accelerated server installed base is estimated using IDC’s 2024 Q2 Data Center 
Semiconductor Consumption Report (IDC 2024b), which contains annual data for historical and 
forecasted CPU, GPU, and network switch shipments. GPU shipments from this 2024 report 
are categorized by GPU brand and model. IDC’s 2023 Processors AI Tracker (IDC 2023a) was 
also used to estimate the accelerated server installed base. The 2023 report also provides 
estimated GPU shipments for the years 2017 to 2027, with each year broken out by AI activity 



   
 

2024 United States Data Center Energy Usage Report 29 

– either training, inferencing, or both. The ratio of inferencing and training GPUs from 2017 to 
2027 is extrapolated linearly to develop a ratio for 2028, then applied to the “Data Center 
Semiconductor” shipment numbers. The “Training and Inferencing” category is split equally 
between training and inferencing. Additionally, estimates of the GPU shipment and the 
proportion of servers with 2, 4, or 8 GPUs that were shipped globally from 2019 to 2027 were 
obtained from Omdia Research (Omdia 2024).  
  
The estimates from IDC (IDC 2023a; IDC 2024b) for the number of GPUs shipped to the United 
States for use in data centers is relatively flat between 2017 and 2019, with about 0.5 million 
units or less shipped annually. Shipments begin to rapidly grow in 2021 and continue growing 
through 2023. IDC’s newer (IDC 2024b) shipment forecast projects significantly more GPUs 
than their 2023 estimates. Omdia’s forecast for global shipment of GPUs indicate a U.S. GPU 
growth rate in between the two IDC estimates. Other GPU shipment forecasts reviewed (NSW 
2023; TDC 2024) indicate a U.S. GPU shipment growth closer to the older IDC report (IDC 
2023a), though these other forecasts were also published in a relatively older timeframe than 
the new IDC report (IDC 2024b). IDC’s GPU shipments are based on continued rapid growth in 
the sales and manufacturing of GPUs, with the newer, higher, forecasts influenced by the 
increased AI activity in the second half of 2024. As such, this report uses the higher and lower 
IDC forecasts to bound a range of possible GPU shipments that make up the accelerated 
server installed base of the energy use model for 2024 to 2028, with the lower bound assuming 
that the increased AI activity observed in the second half of 2024 does not continue and GPU 
shipments revert to the prior expected growth rate.  
 
The number of accelerated servers shipped in each year are determined by using (1) the total 
GPU shipments range from IDC (2023a; 2024b) and (2) the distribution of 2, 4, and 8 GPU 
servers shipped in each year estimated by Omdia Research (2024). The distribution is applied 
to all GPUs except for the most advanced, such as the NVIDIA B100 or H100 classes, which 
are assumed to all be shipped in 8-GPU configurations. These servers are assumed to be a 
subset of the total 2+ socket server shipments described previously. 
 
The allocation of shipped servers for training or inferencing is based on the number of GPUs 
shipped in each category provided by IDC (2023a). Servers with 8-GPUs are preferentially 
allocated to training, then inferencing, followed by 4 and 2 GPU servers. Once the allocation of 
training servers is filled, the remaining are allocated to inferencing. 

AI Non-accelerated Server Shipments  
We also consider servers that are configured for AI workloads but do not have GPUs or other 
accelerators (only two CPUs). The Omdia AI server shipment estimates (2024) also include 
estimates for the number of these non-accelerated servers shipped each year. From that data, 
we calculate the ratio of non-accelerated to accelerated servers in each year and use that to 
estimate the shipments in our dataset. All non-accelerated AI servers are assumed to be in the 
inferencing category. 
 
AI servers are assumed to be a subset of the total servers tracked by IDC. Therefore, future 
scenarios contain the same total installed base of servers, but with a varying number of those 
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servers containing additional GPUs for AI applications. 

Installed Base Calculation and Results 
The installed base is calculated by assuming an average lifetime for servers each year, then 
summing the server shipments for the corresponding number of years prior, as shown in 
Equation 1. For this study, the lifetime assumption for 2000–2019 is 4.4 years, increasing to 5 
years in 2020, and to 5.7 years by 2023, following trends of hyperscale data centers and trends 
provided by Omdia (2024) and IDC (2023b), as shown in Figure 3.8. For AI accelerated and 
nonaccelerated servers, the same lifetime assumptions are used. The entire calendar year’s 
worth of shipments is considered when calculating the installed base, and therefore the 
resulting values effectively represent the installed base that is present at the end of each 
calendar year. We factor this into our calculation of total electricity consumption, as discussed 
in the corresponding results section. 
 
The total server installed base in 2014 was 14 million and was entirely made up of conventional 
servers. By the end of 2020, the total installed base reached 21 million, with AI servers 
accounting for 1.6 million servers, while conventional servers grew to nearly 20 million. By 
2028, AI servers make up between 8 and 12 million of the total installed base, which grows to 
almost 37 million, depending on the number of GPU shipments from 2024 to 2028, as shown in 
Figure 3.9.   

𝐼𝐼𝐼𝐼𝑦𝑦 = �𝑆𝑆𝑖𝑖

𝑦𝑦

𝑦𝑦−𝑖𝑖

 

Where: 
𝐼𝐼𝐼𝐼𝑦𝑦 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖𝐼𝐼 𝑦𝑦𝐼𝐼𝐼𝐼𝑦𝑦 𝑦𝑦 
𝑆𝑆𝑖𝑖 = 𝑆𝑆𝐼𝐼𝑦𝑦𝑆𝑆𝐼𝐼𝑦𝑦 𝐼𝐼ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖𝐼𝐼 𝑦𝑦𝐼𝐼𝐼𝐼𝑦𝑦 𝑖𝑖 

 

 
Figure 3.8.  Assumed average age of servers installed in each year of our analysis. 
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Figure 3.9.  Total server installed base for 2014–2028 with higher bound shipments (left). Adjusted 
installed base with lower bound GPU shipments (right). 
 

Storage and Network Types and Power Draw 
Data center storage equipment is captured using shipment data from IDC’s storage equipment 
tracker. Shipments are tracked in terms of total terabytes (TB) shipped for various storage 
systems and media types. The two media types that IDC categorizes shipment data by are (1) 
hard disk drive (HDD) and (2) flash storage, which includes solid state drives (SSDs). These TB 
shipments are converted to number of drives in order to be paired with power consumption 
estimates that are typically reported on a per-drive basis. Figure 3.10 shows the assumption 
used for this conversion; data for 2010–2020 is based on feedback collected from industry 
during the report review period; and for 2020 and beyond, we assume a 20% density increase 
annually. 
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Figure 3.10.  Assumed average drive capacity (TB) of new storage devices shipped in each year. 
 
We model the energy use of these systems separately, as the way they consume electricity is 
functionally different. Hard disk drives consume energy anytime the disk is spinning, while flash 
drives primarily consume electricity when they are actively inputting or outputting data. The 
electricity demand of all storage is dependent on the read/write frequency and patterns, which 
is not feasible to define across the industry as a whole. Therefore, we rely on estimated 
averages and general rules of thumb for estimating the power draw of this equipment.  
 
The wattage for HDD is estimated by using the historical trend reported in the 2016 report, 
which was based on datapoints for 2006 (14 W/disk) and 2015 (8.6 W/disk). For 2020 and 
beyond, we use a recent market research report that estimates 7 W/drive in 2020 and 6.4 
W/drive in 2025 (Monroe and Johns 2024). We model the years between these datapoints as 
exponential curves, then extend the estimates from 2025 to 2028 using the 2020–2025 
compound annual growth rate (–1.6%). 
 
The flash storage wattage estimates are less straightforward to produce. There has been a 
recent transition from SSDs using traditional SATA server attachments to higher-performance 
NVMe configurations. While NVMe storage drives are considered to be more power efficient, 
they are operating at very high levels of performance, and therefore they ultimately tend to 
consume more electricity per drive. Similar to HDDs, our starting estimates are built on the 
analysis done for the prior report, which was based on a 2015 ASHRAE report and industry 
feedback. For 2020–2025, we leverage the findings from the same market research report 
(Monroe and Johns 2024), which notes the transition to NVMe-configured flash drives that are 
estimated to use 11 W per drive. The resulting wattage estimates for storage devices shipped 
in each year are shown in Figure 3.11.  
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Figure 3.11.  Average wattage of storage drives shipped in each year. 
 
Network equipment is captured in two categories: ethernet switches and InfiniBand switches for 
AI clusters. Shipment data for ethernet switches is obtained from IDC’s Network Equipment 
Tracker in units of number of ports. These shipments are specified for ports of various speeds. 
For the InfiniBand switches, we obtained data from IDC regarding AI equipment, which included 
the number of switch units shipped in each year. Note that other internal network hardware for 
AI, such as NV links, are considered part the AI server system and represented within the 
accelerated server category. 
 
Average power draw per ethernet port follows the estimates used in the previous report through 
2020, then is held constant through 2028, as shown in Figure 3.12. For port speeds not present 
in the previous report (100 Gb, 200/400 Gb, and 25/50 Gb speeds), wattage per power is 
assumed to scale linearly with speed. InfiniBand switch units are assumed to operate at an 
average of 700 W, based on the rated wattage values for 64-port units.  
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Figure 3.12.  Average wattage per port for ethernet ports. 
 

Storage and Network Population 
From 2014 to 2020, HDD accounts for most storage equipment, with Flash storage contributing 
a relatively small but steadily increasing proportion. By 2023, flash storage grows to account for 
25% of the total, then continues to grow to 41% by 2028. The total installed base across both 
technologies reaches nearly 340 million drives by the end of 2028, as shown in Figure 3.13.  
 

 
Figure 3.13.  Installed base of storage devices in drive units (left) and TB capacity (right). 
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Figure 3.14.  Installed base for data center ethernet switch ports by port speed. 
 
Figure 3.14 shows the installed base of ethernet ports broken out by speed in the end of each 
year. Higher speed ports (> 50GB) begin to dominate the installed base around 2023, 
accounting for 64% of the total. Higher speeds continue to grow through 2028, with 200/400Gb 
reaching 34% and 100GB reaching 40% of the total. InfiniBand switch units grow rapidly, 
beginning in 2020 with under 2000 units and reaching 1.8 million units in 2028.  
 

4. Data Center Infrastructure 
Data Center Classifications 
Although this study utilizes an IT equipment-based bottom-up model, it is still important to 
understand the types of data center facilities that IT equipment is being installed in, as different 
space types can have different operational characteristics as well as different cooling systems, 
which impact total electricity demand. In the 2016 report, our space types were defined by size 
and ownership/business (internal vs. service provider) categories. In this study, the space types 
are defined to align with new data available from IDC regarding the number, square footage, 
rack count, and other metrics of built data centers over time (IDC 2023b). These space types 
are described in Table 4.1. While these space types are not explicitly defined by size, for the 
most part they can be considered as either small, with an average square footage less than 150 
(Telco Edge, Commercial Edge, SMB, and Enterprise Branch), midsize, with an average square 
footage of 2700 (Internal) and 6900 (Comms SPs), or large-scale, with average square footages 
of 11,000 for the colocation space types and 30,000 for hyperscale facilities (average square 
footage per module, not per entire facility/campus).  
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Table 4.1.  Data Center Space Types Considered in This Study 
Space Type Description 
Telco Edge Deployment of small closets/rooms to micro data centers 

and network infrastructure by communications companies 
as points of presence throughout their network 

Commercial Edge Network closets, server rooms, and micro-data centers 
deployed to support modern digital, infrastructure, and 
software delivery services to edge locations for 
commercial (focused on customer and business 
operations) and industrial (focused on supply chain and 
channel operations)  

Small and Medium Businesses (SMB) SMB deployments in their own internal facilities 
Enterprise Branch Classic remote and branch office (ROBO) deployments 

for large enterprises in their own internal facilities 
(network closets, server rooms) 

Internal Data centers run by enterprises, internally, for their own 
use 

Communications Service Providers 
(Comms SPs) 

Data centers run by telecommunications/cable 
companies to support internal services required to enable 
provision of communications technology services to their 
customers 

Colocation – Sm/Med Scale Data centers built by local colocation companies typically 
providing retail leasing at smaller scale 

Colocation – Large Scale Data centers built by major colocation companies 
providing wholesale and retail colocation leasing, typically 
deploying large and mega datacenters  

Hyperscale Data centers built by companies that deploy internet 
services and platforms at massive scale  

 
Data centers are not uniformly spread across the United States. These data centers house 
computing equipment that operates continuously to support on-demand network requests, 
ranging from small setups in closets to massive warehouses with thousands of servers. Internal 
data centers are typically integrated into larger buildings and managed by businesses with their 
own IT systems. In contrast, multitenant data centers, also known as colocation centers, 
provide space for companies to host their hardware offsite, offering essential services such as 
power, cooling, security, and networking. Concurrently, hyperscale data centers, which are 
large-scale facilities operated by major technology companies, are experiencing rapid growth, 
with Amazon, Microsoft, and Google collectively owning more than half of them (Synergy 
2024).  
 
While internal data centers are scattered across the United States, distinct clusters emerge for 
colocation and hyperscale data center locations. These data centers strategically position 
themselves close to their clients and cloud services users to ensure high availability and low 
response times. Factors such as proximity to population centers, electricity cost, network 
infrastructures, and local utility prices influence their location choices (Goiri et al. 2011). 
Information availability on data center location and size varies depending on the type and 
owner. We identified likely locations of in-house small and midsize data centers following the 
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methodology provided in Ganeshalingam et al. (2017) reports, and we updated the method with 
latest available data. Detailed information on colocation and hyperscale data centers is derived 
from commercial compilations that get support and input from data center service providers. A 
comprehensive geospatial dataset of over 3,000 data centers was developed through direct 
engagement with data center operators, analysis of open-source data center inventories, and 
extensive manual web searches.  
 
The 451 Research Datacenter KnowledgeBase, managed by S&P Global Market Intelligence, 
(S&P Global 2024) offers comprehensive insights into data center locations, services, and 
utilization, covering both colocation and wholesale facilities. This dataset was integrated into 
our inventory to enhance the depth and accuracy of our spatial distribution analysis, enabling a 
comprehensive assessment of energy demand distribution by data center types across the U.S. 
According to the latest estimates, Virginia hosts the highest electricity demand associated with 
data centers in the United States, serving as the primary hub for both colocation and 
hyperscale data centers, followed by California and Texas.  
 

Distribution of Servers Across Data Center Types 
Total number of servers in each data center type is calculated based on the distribution shown 
in Figure 4.1 which is from an IDC “build” dataset that includes number of racks in each space 
type, plus an estimate of how many servers are typically on each rack in various data center 
types. In the early 2010s, internal data centers dominated the industry, with hyperscale and 
colocation providers housing less than 15% of the servers. In the 2016 report, we estimated 
that in 2014, 24% of servers were present in hyperscale data centers, and that by 2020, this 
number would rise to 40%. The current data estimates a slower shift to hyperscale facilities (8% 
in 2014, 25% in 2020), but a more aggressive overall shift when considering colocation and 
hyperscale facilities together (20% in 2014, 57% in 2020). With the substantial build out of 
large-scale facilities for AI and other purposes, we now estimate that 74% of servers were 
present in these space types in 2023, and this proportion will rise to 85% by 2028.  
 

 
Figure 4.1.  Distribution of servers by data center type. 
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We use the distribution in Figure 4.1 to assign IT equipment in our model into each space type. 
First, we calculate the total number of servers in each space type by multiplying the total 
installed base by the distribution. All AI accelerated servers are allocated evenly to the 
Hyperscale and Colocation-Large Scale categories. These servers are then broken out 
separately into an “AI” category to capture the unique cooling system configurations used for AI 
servers (a mix of liquid and air cooling). The total load calculated for AI servers is then 
distributed evenly between Hyperscale and Colocation-Large Scale. AI nonaccelerated servers 
go 80% into Hyperscale and 20% into Colocation-Large Scale. Then, multiple processor count 
servers go into Hyperscale, Colocation, and Internal space types proportional to how many 
servers are left in each category. Finally, single and dual processor servers are assigned to 
space types proportionate to how many spaces remain. 

Distribution of Cooling Systems Across Data Center Space Types 
The distribution of cooling systems across the United States is determined by combining 
market data with insights from industry experts. Specifically, we acquired market data from the 
Dell’Oro Group, which details annual manufacturing revenue segmented by primary heat 
rejection methods (such as chilled water, direct evaporative, indirect evaporative, and direct 
expansion) in North America. These market insights were then integrated with system costs (in 
dollars per megawatt) to estimate the distribution of major cooling system categories for each 
year. 
 
The market data offers an overview of the distribution of major cooling system categories, while 
insights from experts allow for a more detailed breakdown into specific systems, as outlined in 
this report. To achieve this, we collected data and insights from industry experts and formulated 
an optimization problem to estimate the nationwide distribution of cooling systems defined in 
this study. This optimization problem aims to align the estimated distribution of cooling systems 
with the major cooling system categories identified in market data, while adhering to constraints 
established by industry expertise. The result is a comprehensive breakdown of cooling 
systems, categorized by data center space type across the United States for each year (see 
Figure 4.2 for cooling systems distribution in 2023). 
 



   
 

2024 United States Data Center Energy Usage Report 39 

 
Figure 4.2.  Data center cooling systems distribution by space category in 2023. 
 

Data Center Infrastructure Electricity and Water Modeling 
Method Overview 
Two key metrics are used when describing the resource intensity of data center facility 
infrastructure. Power Usage Effectiveness (PUE) is defined as the total electricity demand of 
the data center divided by the electricity demand of the IT equipment. Water Usage 
Effectiveness is similarly defined as the total water consumption of the data center divided by 
the electricity demand of the IT equipment. In this section, we discuss the on-site (or “direct”) 
water consumption, sometimes referred to as “WUE (site)” primarily associated with cooling 
infrastructure, as opposed to the water consumption from the electricity generation (“WUE 
(source)”). PUE is technically dimensionless (kWh/kWh), while WUE is reported in terms of 
liters per kWh.  
 
The PUE and WUE metrics of data centers are influenced by various factors, including cooling 
systems, operational practices, and climatic conditions. For this report, these metrics are 
simulated using established thermodynamics-based models (Lei et al. 2023; Lei and Masanet 
2022). Simulation results are then paired with assumptions for the locations of data centers 
across the United States, and the cooling systems deployed across different space types, in 
order to develop estimates for overall PUE and WUE averages; this modeling framework is 
summarized in Figure 4.3. The inputs and outputs of the thermodynamic simulation model are 
described in the blue box on the left of Figure 4.3. First, operational characteristics are 
determined for a total of 18 simulation cases, which represent a combination of data center 
space type and cooling system type (described further below). This model considers the 
cooling system at the facility as well as other infrastructure equipment including UPS, power 
transformation and distribution, fans, and pumps. For each case, 50 simulation scenarios are 
developed drawing from underlying distributions for each parameter in the model. Each 
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scenario is then run through the simulation model using data from each weather station in the 
United States. This results in a dataset of PUE and WUE (site) results for over 1 million 
simulations.  
 

 
 
Figure 4.3.  Flow chart of methodology for modeling PUE and site WUE across data center types.  
 

Simulation Modeling and Cooling Systems Modeled 
Nine cooling systems commonly implemented in the United States were considered, comprising 
various combinations of refrigeration units (including direct expansion, air-cooled chiller, and 
water-cooled chiller), economizer use (including airside and waterside economizers), 
dry/adiabatic cooling, and liquid cooling options, as summarized in Table 4.2 below. 
 
Table 4.2.  Major Cooling Systems Considered in this Study 

Cooling System Type Notes 
Direct expansion system Direct expansion systems, typically called computer room air 

conditioners (CRACs), are commonly employed in small to 
midsize data centers because of their simplicity and cost-
effectiveness. In these systems, refrigerant circulates directly 
through indoor coils to cool the data center air. 

Air-cooled chiller Air-cooled chillers are widely used across data centers of 
varying sizes. These systems employ air-cooled condensers 
to remove heat from the system and are commonly paired with 
computer room air handler units to maintain ideal IT operating 
conditions. They are the preferred option where the first cost is 
a major factor, in situations where minimal on-site water 
consumption is crucial, or where space limitations prevent the 
installation of cooling towers. 

Water-cooled chiller Water-cooled chillers are widely used in data centers, owing to 
their high efficiency and capacity to manage substantial 
cooling requirements. These systems use water-cooled 
condensers to extract heat from the system, subsequently 
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releasing it into the environment via cooling towers. They are 
typically integrated with computer room air handler units to 
ensure optimal IT operating conditions. However, the water 
evaporation process in cooling towers has raised concerns 
regarding data center water consumption and availability at 
the local level. 

Airside economizer (air- or water-
cooled chiller) 

Airside economizer systems leverage outdoor air to cool the 
internal space of a data center during favorable weather 
conditions. This approach effectively reduces the data center's 
cooling energy consumption and operational costs. 
Additionally, an air-cooled or water-cooled chiller system can 
serve as the supplementary cooling when the airside 
economizer alone cannot meet the cooling demands. 

Waterside economizer (water-
cooled chiller) 

Waterside economizer systems minimize energy consumption 
and operational costs by using cool water drawn from natural 
resources (such as lakes, rivers, or the sea) or produced by 
cooling towers when the outdoor air is cool and dry, thereby 
reducing or eliminating reliance on mechanical refrigeration. In 
instances where the waterside economizer is insufficient, a 
water-cooled chiller provides supplementary cooling. Like with 
water-cooled chillers, local water consumption remains an 
issue. 

Dry cooler with or without 
adiabatic assist (air- or water-
cooled chiller) 

Dry coolers reject heat to the ambient air and enable “free” 
cooling during favorable weather conditions, with or without 
adiabatic assistance. When the outdoor dry bulb temperature 
is low, the dry coolers efficiently reject heat using ambient air 
alone. With adiabatic assistance, spraying or circulating water 
through pads upstream of the heat exchanger coils enhances 
cooling, especially when the dry bulb temperature is high and 
the wet bulb temperature is low (typically in dry seasons). This 
system conserves water compared to evaporative cooling 
towers. An air- or water-cooled chiller system provides 
additional cooling when needed. 

Airside economizer & adiabatic 
cooling (air- or water-cooled 
chiller) 

Like the airside economizer (air- or water-cooled chiller), this 
configuration seeks to minimize or eliminate mechanical 
refrigeration by leveraging the adiabatic process, wherein 
water evaporates directly into the supply air to provide cooling. 
This approach is highly energy-efficient and cost-effective, and 
in certain climate zones, it can entirely replace the need for 
supplementary cooling throughout the year. Additionally, 
potential use of an air- or water-cooled chiller system can 
provide supplementary cooling when necessary (e.g., during 
heat waves or periods of increased cooling demands when the 
airside economizer and adiabatic cooling together cannot 
meet the cooling requirements).  

IT liquid cooling: dry cooler with 
or without adiabatic assist (air- 
cooled chiller) 

Dry coolers with or without adiabatic assist, as described 
above, can be used to minimize water consumption and 
mechanical refrigeration while maintaining high energy 
efficiency (“free,” compressor-less cooling). The higher 
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operating temperature of liquid cooling systems facilitates 
better water and energy efficiency/performance (less chiller 
run hours and less adiabatic assist). Dry coolers can 
effectively meet data center cooling needs for much of the 
year, particularly in regions with favorable climates. This 
provides an energy-efficient and water-friendly cooling solution 
for data center infrastructure. In instances where dry coolers 
cannot fully meet the cooling requirements, an air- or water-
cooled chiller system is deployed for supplementary cooling. 
For purposes of our simulation, an air-cooled chiller was 
assumed. 

IT liquid cooling: waterside 
economizer (water-cooled chiller) 

Liquid IT cooling is an emerging technology for cooling dense 
IT equipment (e.g., AI). While IT liquid cooling can use 
conventional chiller plants, an advantage of liquid cooling is 
the ability to elevate the cooling temperature and take greater 
advantage of “free” cooling. Therefore, the base case is a 
waterside economizer. A waterside economizer system 
decreases or eliminates dependence on mechanical 
refrigeration and is well suited for liquid cooling (e.g., rear door 
heat exchanger, direct-to-chip, and immersion). Liquid-cooled 
IT systems can often be operated at higher water/refrigerant 
temperatures than air-cooled IT systems, and waterside 
economizers can effectively fulfill data center cooling 
requirements for much of the year, especially in regions with 
favorable climates. When necessary, an air- or water-cooled 
chiller system is deployed for supplementary cooling. For 
purposes of our simulation, a water-cooled chiller was 
assumed. While highly energy-efficient, this system consumes 
substantial amounts of water, like all evaporative cooling 
systems. 

Note: (1) parentheses denote a supplementary cooling system that may not actually be deployed in favorable climate 
zones. For example, in the scenario of an airside economizer (air- or water-cooled chiller), the air- or water-cooled 
chiller system would only be used when the airside economizer alone cannot meet the data center's cooling needs; 
(2) systems whose names do not begin with 'liquid cooling' represent air-cooled IT systems. 
 
 
Various data center operating characteristics that influence PUE and WUE values were 
considered in the simulations conducted for this report. These characteristics encompass 
equipment efficiencies (such as UPS, power transformation and distribution, fans, and pumps) 
as well as indoor environment set points within the data center (such as dry bulb temperature, 
relative humidity, and facility water temperature), which vary across different data center 
categories defined in this report. Generally, smaller categories of data centers, such as 
commercial edge, enterprise branch, small- to medium-size business (SMB), and telco edge, 
operate with lower UPS and airflow efficiencies and have narrower allowable ranges for 
temperature and relative humidity. In contrast, hyperscale and AI data centers tend to operate 
with higher UPS and airflow efficiencies, as well as wider allowable temperature and relative 
humidity ranges, leading to a significant portion of free cooling throughout the year. Data 
centers falling between these two categories, such as comms service providers (SPs), internal, 
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and colocation, typically have UPS and airflow efficiencies, as well as allowable temperature 
and humidity ranges, that lie somewhere in between. In this report, uncertainty ranges of the 
best and worst operating characteristics, drawn from several relevant studies (Lei et al. 2023; 
Lei and Masanet 2022, 2020), were employed for PUE and WUE simulations of each data 
center type (see Table 4.3 for assumptions regarding the major determinants of PUE and 
WUE). These simulation results were subsequently reviewed by industry experts and 
meticulously adjusted based on industry-reported PUE and WUE values until they aligned with 
expected ranges.  
 
Table 4.3.  Model Assumptions Regarding the Major Determinates of PUE and WUE by Data Center 
Space Type/AI 

Space Type UPS 
Efficiencies 

ASHRAE Thermal 
Envelope (ASHRAE 
2021) 

ASHRAE Liquid 
Cooling Class 
(ASHRAE 2014) 

• Commercial Edge 
• Enterprise Branch 
• SMB 
• Telco Edge 

77–85% Recommended N/A 

• Comms SPs 
• Internal 
• Colocation - Sm/Med Scale 
• Colocation - Large Scale 

80–94% A1 N/A 

• Hyperscale 
• AI (IT Air Cooling) 

90–99% A2 N/A 

• AI (IT Liquid Cooling) 90–99% N/A W45 
 
To accurately capture variations in PUE and WUE values across different climate zones and 
account for micro-level geographical differences in climate, typical meteorological year (TMY) 
climate data were collected from different weather stations situated across the United States, 
comprising hourly measurements of dry bulb temperature, relative humidity, and atmospheric 
pressures throughout the year. In total, climate data from 965 weather stations were collected, 
representing evenly distributed geolocations across the U.S. 
 
Using these location specific TMY climate data, we conducted a large-scale simulation to 
evaluate annual average PUE and WUE across a broad spectrum of data center space types 
and cooling systems (refer to Figure 4.4 for a simplified flowchart illustrating the simulation 
process). Specifically, for each data center space type and cooling system type considered, we 
randomly sampled 50 operational scenarios from the uncertainty ranges of best and worst 
operating characteristics, where each scenario represents real-world data center operational 
practices. These simulations provide valuable insights into annual average PUE and WUE 
values for diverse data center settings across the U.S., accounting for various space types, 
cooling system types, operational scenarios, and climate conditions. 
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PUE and WUE Results 
Figure 4.4 and Figure 4.5 depict the uncertainty ranges of annual average PUE and WUE 
values for the data center space types and cooling systems examined in this study. The lower 
limits represent data centers with best practice efficiency values in favorable climates, while the 
upper limits correspond to poor efficiency values in hot, humid climates.  
 
Figure 4.4 reveals a striking variation in PUE values across different types of data center 
spaces, reflecting the diverse efficiency practices implemented within each category. PUE 
values vary according to cooling system types, albeit not as significantly as the variance among 
different types of spaces. Utilization of economizers, adiabatic cooling, or dry coolers can 
contribute to lower PUE values, highlighting the impact of different cooling methodologies on 
overall energy efficiency. 
 
Note that simulated PUEs assume systems are commissioned and operate as designed. This 
is rarely the case, and generally system performance does not meet design expectations. For 
example, it is not uncommon to find multiple computer room air conditioning units in a data 
center “fighting” with each other—some humidifying while others are dehumidifying. Therefore, 
the actual PUEs (and WUEs) will likely not be as good as estimated, however, since the 
uncertainty ranges are primarily drawn from studies regarding data centers in the earlier years 
of our historical range of 2014-2023 (Lei et al. 2023; Lei and Masanet 2022, 2020), and 
generally data center PUE has improved during that period (Uptime 2024), the median of the 
uncertainty values was assumed to be representative for data centers through 2023. For future 
years, 2024–2028, the PUE and WUE values for the data center space types were varied by a 
range of +/- 10% to reflect possible differences in the future type and operation and cooling 
systems. 
 
As illustrated in Figure 4.4, WUE values display variability across different data center space 
types, reflecting distinct efficiency practices. However, a significant contrast emerges among 
various cooling system types. Data centers employing water-cooled chiller systems without 
economizers exhibit the highest WUE, largely attributed to substantial cooling tower water 
usage. 
 
This trend extends to data centers using waterside economizers (water-cooled chillers), for 
both IT air-cooled facilities and IT liquid-cooled facilities. Waterside economizers play a pivotal 
role in reducing WUE values by eliminating or reducing heat from compressors. Moreover, in IT 
liquid-cooled data centers, WUE values can be further reduced through improved heat transfer 
and elevated coolant/facility water temperature setpoints, enhancing the utilization of waterside 
economizers throughout the year. 
 
Despite these optimizations, the indispensable role of evaporative cooling in dissipating internal 
heat from IT devices remains evident, therefore contributing to significant water consumption. 
To mitigate water consumption, data centers can employ airside economizers, as demonstrated 
by facilities utilizing either an airside economizer (water-cooled chiller) or airside economizer 
with adiabatic cooling (water-cooled chiller). In these scenarios, the implementation of airside 
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economizers allows for the shutdown of chilled water systems during favorable weather 
conditions, resulting in substantial water conservation. Notably, the application of airside 
economizers with adiabatic cooling (water-cooled chiller) is prevalent among hyperscale data 
centers. Their optimized operational practices enable extensive use of airside economizers to 
support data center cooling, with sporadic adiabatic cooling resulting in minimal water 
consumption. 
 
Furthermore, data centers using dry coolers with adiabatic assist exhibit the highest water 
consumption among the remaining scenarios, where water consumption primarily occurs during 
the adiabatic pre-cooling process when wet mode operations are activated. Lastly, the 
remaining cases display minimal WUE values, primarily influenced by occasional humidification 
requirements. 
 
The above discussion does not imply low site WUEs are necessarily good. In many cases, 
there are tradeoffs between low PUEs and low site WUEs. For example, water-cooled chillers 
and other evaporation-based cooling systems are generally more energy efficient than an air-
cooled chiller or other waterless systems. While air-cooled chillers use no water, they use more 
energy. There are two WUE metrics: site and source. Site WUE only measures water at the 
facility level, while source WUE accounts for the water required to generate the electricity that 
is used by the facility. Including both site and source WUE reflects the true water cost of data 
centers, but its calculation is complex and highly dependent on the source of electricity.  
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Figure 4.4.  Simulated PUE and WUE (site) ranges by data center cooling system and space type. 
 
Aggregate PUE and WUE for each data center space type is calculated by combining (1) the 
simulation results presented in Figure 4.4 (2) the distribution of cooling systems, discussed 
above and shown for a sample year in Figure 4.2 and (3) the assumed locational distribution of 
different data center space types, discussed above. This leads to the aggregate space type 
PUE and WUE values shown in Figure 4.5. The ranges shown in the figure represent the 
possible range of the aggregate metric, considering the 10th and 90th percentiles of the 
simulation results described above; the ranges do not represent the full spectrum of individual 
facility PUEs within the space type category. For example, while colocation facilities as a whole 
are not assumed to typically deploy the lowest-PUE cooling systems (i.e., those with adiabatic 
cooling), such systems on certainty in some colocation facilities. The PUE of a single colocation 
facility might therefore fall well below the range of the aggregate metric shown here.  
 
As discussed above, significant uncertainty exists regarding the “true” PUE of existing data 
centers. The simulation modeling here assumes facilities are operated as designed, and makes 
assumptions about temperature setpoints, outdoor weather conditions, and other 
characteristics that might differ from reality. Notably, more data is needed to appropriately 
model the “airside economizer & adiabatic cooling (air-cooled chiller)” system, and the water 
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usage associated with it. The current simulations are set up such that the adiabatic cooling 
system is not used most of the year, with most of the cooling being supplied by the airside 
economizer. This optimal operation might not be reflective of the true practices with these 
systems, and therefore the WUE of this system (shown in Figure 4.4) may be low. Some 
hyperscale facilities report WUE values for similar systems of 0.1-0.3 L/kWh, which is much 
higher than the values simulated here, though the specifics of those systems are not known. 
For context, if this cooling system has a median WUE of 0.2 L/kWh instead of the values 
modeled here, the aggregate median WUE for the hyperscale category would increase from 
0.32 to 0.40, which is still within the range of uncertainty shown in Figure 4.5.    
  

 
Figure 4.5.  Aggregate PUE and WUE across space type categories considering the facility 
locations and mix of cooling systems present in 2023. 
 
The resulting annual average PUE falls from 1.6 in 2014 to 1.4 in 2023, as shown in Figure 4.6.  
This decline is primarily due to the shift towards larger data centers (hyperscale, colocation) 
that have a lower PUE. By 2023, the average PUE across hyperscale and colocation data 
centers is under 1.4, with around 75% of servers installed in those data centers. This trend 
continues, and by 2028, the average PUE falls to between 1.15 and 1.35, driven again by the 
shift into more energy efficient hyperscale and colocation facilities, combined with the increase 
in liquid-cooled AI servers. 
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Figure 4.6.  Annual average PUE across all U.S. data centers. 
 
The shift toward hyperscale and colocation data centers results in an increase in the overall 
average WUE, which stays just over 0.36 L/kWh through 2023, as shown in Figure 4.7. After 
2023, the average WUE rises slightly, reaching between 0.45 and 0.48 L/kWh, reflecting 
increasing WUEs in the hyperscale and colocation data centers, along with the increased water 
consumption of liquid-cooled systems. 
 

 
Figure 4.7.  Annual average site WUE across all U.S. data centers. 
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5. Total Data Center Electricity/Water/Carbon 
Estimates 

Server Electricity Use 
The total annual server energy use from 2014 to 2023 is presented in Figure 5.1, along with a 
future scenario range of server energy use through 2028. Server energy usage grew from 
about 30 terawatt-hours (TWh) in 2014 to nearly 100 TWh in 2023, more than tripling during 
that period. A large portion of this increase came from GPU-accelerated AI servers, which grew 
in energy usage from less than 2 TWh in 2017 to more than 40 TWh in 2023. Conventional 
servers, primarily dual processor servers, increased significantly during the same period as 
well, doubling from about 30 TWh to nearly 60 TWh.  
 

 
Figure 5.1.  Server annual electricity usage by type. 
 
After 2023, server energy use is presented as a range to reflect various scenarios of future 
equipment shipments and operational practices. Specifically, the count of future GPU 
shipments varies within the higher and lower bounds previously described in the AI Accelerated 
Server Shipments section. Second, the average operational power of AI servers varies 
between 60% and 80% of the rated power as noted in the Server Operational Wattage section. 
Finally, the average operational time of AI servers varies between 75% to 85% of the year as 
noted in the Server Operational Time section. Together the variations of these inputs provide a 
range of operation energy, with the low and high end representing about 240 and 380 TWh in 
2028, respectively, as shown in Figure 5.1.  
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Figure 5.2.  Server annual electricity use by space type. 
 
Figure 5.2 presents total annual server energy use allocated by data center space type. In 
2014, over 60% of server energy consumption was in internal data centers. By 2023, this fell to 
nearly 10%, with hyperscale and colocation data centers accounting for almost 80%.  
 
After 2023, internal data centers’ share of server energy continued to fall, reaching below 2% 
by 2028. Hyperscale and colocation data centers continue to grow in proportion, and by 2028 it 
is expected that hyperscale and colocation will account for over 90% of server energy 
consumption, primarily driven by AI workloads. 
 
Most AI servers are allocated to inferencing throughout the entire period, and these servers 
make up nearly 60% of the AI server energy usage in 2023. By 2028, training server energy 
consumption surpasses inferencing, as more of the higher TDP GPUs are allocated towards 
training, consuming between 50% and 53% of the total AI server energy.  

Storage and Network Electricity Use 
Storage equipment electricity use grows steadily after 2014, nearly quadrupling by 2028, as 
shown in Figure 5.3. HDD units accounted for 94% of the total electricity in 2014, with flash 
making up just 6% of the 7 TWh total. By 2023, flash units had grown to 25% of the 16 TWh 
total. This growth continues and, by 2028, flash units make up 50% of the 22 TWh total. HDD 
electricity usage peaked in 2023 at 12.3 TWh, then falls slightly, reaching 11 TWh in 2028.  
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Figure 5.3.  Storage equipment annual electricity use by type. 
 
Network electricity also sees rapid growth through 2028, ultimately reaching 23 TWh, as shown 
in Figure 5.4. This growth is largely driven by the introduction of InfiniBand switch units, which 
account for 45% of the total in 2028, growing from just under 10% in 2023. Note that other 
internal network hardware for AI, such as NV links, are considered part the AI server system 
and represented within the accelerated server category. 200/400Gb ports also grow rapidly, 
from 6% in 2023 to 26% by 2028. Port speeds less than 50Gb see a decline in total energy 
usage. In 2023, these speeds accounted for 15% of total energy usage, but in 2028 they fall to 
under 2%. 
 

 
 
Figure 5.4.  Network electricity use by port speed, with InfiniBand switches. 
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Total Electricity Use 
Figure 5.5 presents total annual data center energy use from 2014 to 2023, along with a future 
scenario range of total data center energy use in 2024 and 2028. Data center energy use 
remained fairly stable between 2014–2016 at about 60 TWh. Energy use began to increase as 
the amount of accelerated AI servers in the server stock began to become significant in 2017, 
and by 2018 data centers consumed about 76 TWh, representing 1.9% of total U.S. electricity 
consumption. U.S. data center energy use continued to grow at an increasing rate, reaching 
176 TWh by 2023, representing 4.4% of total U.S. electricity consumption. 
  
After 2023, total data center energy use is presented as a range to reflect various scenarios of 
future equipment shipments and operational practices, as well as variations in cooling energy 
use. The equipment variations are based on the range of GPU shipments, average operational 
power and operational time of GPU-accelerated servers, as previously outlined for the future 
range of server electricity use. The cooling energy use variations are based on scenarios in 
cooling system selection type and efficiency of those cooling systems, as previously outlined in 
the infrastructure section of this report. Together the scenario variations provide a range of total 
data center energy, with the low and high end representing about 325 and 580 TWh in 2028, as 
shown in Figure 5.5, representing 6.7% to 12.0% of total U.S. electricity consumption. 
 

 
 
Figure 5.5.  Total data center electricity use from 2014 through 2028. 
 
Figure 5.6 presents the total historical and future ranges of U.S. data center energy use 
allocated by data center equipment, showing that total energy use growth between 2014 and 
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2023 is driven by both a rapid proliferation of AI servers and well as continued growth in 
conventional server energy demand. Storage electricity continues to increase, but at a rate 
slower than server growth, causing the storage proportion of total data center energy to begin 
to slightly decrease as AI servers begin to impact the total server stock. Networking electricity 
use remains flat around 3% from 2014 to 2022, then begins to grow in 2023 with the 
introduction of InfiniBand switch units. Infrastructure energy accounts for 40% of total electricity 
in 2014, then falls to 30% in 2023 as the national average PUE improves, as previously shown 
in Figure 4.7. The falling PUE is driven by two main factors, PUE improvements across all data 
center types and the increase in proportion of servers installed in facilities with lower PUE 
(hyperscale, colocation), as shown in Figure 5.7. Additionally, Figure 5.6 shows that the total 
range of energy use growth for 2024 and 2028 is highly dependent on the quantity and 
operation of AI servers.  
 

 
Figure 5.6.  Total data center electricity use from 2014 through 2028 by equipment type. 
 
 



   
 

2024 United States Data Center Energy Usage Report 54 

 
Figure 5.7.  Total data center electricity use from 2014 through 2028 by space type. 
 

Comparison to Previous Report 
The prior study conducted by Shehabi et al. (2016) covered the 2000–2020 time period. For 
2015–2020, values were projected scenarios based on expected equipment shipment trends 
and several operational and efficiency scenarios. Substantial differences exist between the 
values presented in that report and what we find today. Even looking at the historical base year 
of that study, 2014, we have slightly different estimates for total electricity consumption. This 
difference is driven by a few key factors. First, updated shipment data showed a slight 
decrease (a few percent) in units sent, as compared to data we received at the time. 
Additionally, our definition of space types changed slightly, and we obtained much more 
granular analyst estimates for the floor space and number of racks in various types of data 
centers. Ultimately, this led us to estimate that more servers were still present in internal and 
small data centers, which run servers at lower utilization levels, than we previously thought; this 
lowered the total estimated power consumption of servers. Finally, we altered the 
categorization of servers to be based on processor count rather than price point (i.e., volume, 
midrange, and high-end categories in the prior report). In doing so, we revisited our power 
assumption for servers that previously appeared in our high-end category and now largely exist 
in our multiple processor count category (in the subcategories of 8 or 16+ processors). For 
these servers, we previously extrapolated the wattage trend over a very long time period using 
an annual percentage growth rate; this led to very high wattage estimates that are not in line 
with any servers we have seen produced and shipped since then. While these servers are a 
very small portion of the total server installed base, assuming these high wattages increased 
our results meaningfully over the new estimates.  
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About one-third of the difference between the 2014 values in the two studies is due to the 
differences in server electricity consumption described above. This difference is compounded 
by PUE, since any change in IT electricity also changes the electricity consumed. Further, the 
current study has a lower aggregate PUE across the industry as compared to the 2016 study; 
this is both because we now assume fewer servers had shifted to hyperscale data centers, as 
mentioned above, and because our current PUE modeling assumes systems are operated as 
designed, leading to more efficient values.   
 
The “Current Trends” scenario in the 2016 report displayed a future where data center 
electricity use remained constant through 2020. Additional efficiency scenarios showed the 
potential for electricity use of the industry to decrease throughout this time period. The 
scenarios in the 2016 report did not capture the rise of AI, which has brought a fundamental 
change in the industry and the demand for computing services. Therefore, the current study 
estimates historical electricity use for 2018–2020 that is higher than any of the 2016 report 
scenario results. A comparison of the 2016 report and this current analysis is presented in 
Figure 5.8.  
 

 
Figure 5.8.  Total electricity use for 2014–2020 as estimated in this report, compared to the 
“Current Trends” scenario from the 2016 report. 
 

Water and Emission Impacts  
Direct Water Consumption 
Figure 5.9 shows the growth in direct water usage in data centers. In 2014, data centers 
consumed 21.2 billion liters of water, with 64% in internal data centers. By 2023, hyperscale 
and colocation account for 84% of the 66-billion-liter total, while internal data centers fell to just 
12%, driven by water efficiency improvements. These trends are expected to continue through 
2028, with internal data centers falling to just 2% of the total. Hyperscale data centers in 2028 
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are expected to consume between 60 and 124 billion liters. 

Figure 5.9.  Direct water consumption by data center type. 

Indirect Water Consumption and Emissions from Electricity Use 
Indirect water use and GHG emissions associated with electricity use represent impacts 
occurring at the power generation source. The U.S. has over 12,000 utility-scale power plants 
using fossil fuels, nuclear, and renewables, each with unique water and emissions footprints 
(EIA 2022). Water usage during power generation varies based on the type of energy and the 
plant's efficiency. Water consumption refers to the amount of withdrawn water that is 
permanently removed from the immediate water cycle due to evaporation or other irreversible 
processes. Thermoelectric plants require significant cooling, while hydroelectric reservoirs lose 
water through open surface evaporation, leading to water consumption that impacts local 
resources. GHG emissions are primarily attributed to combustion from fossil-fuel-based (coal, 
natural gas, and petroleum) electricity generators, which account for more than 99% of 
emissions associated with electricity generation (EIA 2022). The water consumption and GHG 
emissions embedded in electricity use depend on the fuel type, technology, and the location of 
generation.  

Balancing authorities manage the electrical grid, ensuring that electricity demand and supply 
balance within a specific portion of it. They oversee generation and coordinate electricity 
transfers with neighboring areas. Balancing authorities represent the most detailed level of the 
electricity grid, managing real-time electricity supply and demand through internal generation 
and external transfers. The water and emissions associated with electricity used by data 
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centers and other end users depends on the power plants supplying their electricity, influenced 
by the fuel mix and efficiency managed by the balancing authorities. The U.S. Energy 
Information Administration (EIA) gathers and disseminates detailed data on U.S. power plants, 
thereby enhancing our understanding of the U.S. electricity generation portfolio and its 
environmental impact. We used detailed electricity interchange data between balancing 
authorities from the EIA hourly electric grid monitor (EIA 930 2024) and combined it with power 
plant-level electricity generation (EIA 923 2024), water consumption (EIA 2024), and GHG data 
(EPA 2024) to estimate the environmental impact associated with a unit of supplied electricity 
for each balancing authority. The detailed methodology, intensity factors, and related scripts 
can be found in Siddik et al. (2024). 

The water and emissions associated with electricity use can be quantified using water 
consumption intensity, which measures the volume of water consumed per unit of electricity 
used, and GHG emission intensity, which measures the mass of GHG per unit of electricity 
used. Each county is assigned a balancing authority based on its geographic location, linking 
the environmental impact of electricity use to the end users. Figure 5.10 illustrates the spatial 
variation of the annual average water consumption intensity and GHG emission intensity 
factors across U.S. counties, derived from the balancing authorities governing those areas. 
This visualization reveals significant, yet uneven, variability across different regions of the 
country.  

Figure 5.10.  Water consumption and GHG emission intensity factors of electricity use by 
county. 

As noted earlier, U.S. data centers consumed approximately 176 TWh in 2023. The total 
indirect water footprint of U.S. data centers is nearly 800 billion liters, attributed to water 
consumed indirectly through electricity use, based on the regional electricity grid mix for U.S. 
data center locations. Concurrently, total GHG emissions for that same electricity grid mix 
would be 61 billion kilograms of CO2 equivalent. In 2023, energy consumption by a data center 
translates to national average of 4.52 L/kWh of indirect water consumption, along with 0.34 kg/
kWh emissions. In comparison, the average water intensity factor for electricity use in the U.S. 
overall is 4.35 L/kWh, while the emission factor is 0.35 kg/kWh of CO₂ equivalent.  

It is important to note that the methodology used here to calculate indirect water and emission 
impacts does not incorporate any power purchase agreements between individual data center 
facilities and their electricity providers or on-site “behind the meter” generation, which could 
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significantly affect water consumption and emissions estimates, depending on the electricity 
source. Nevertheless, due to the unavailability of facility-level data, we are constrained to 
assume the same electricity grid mix as that provided by the local balancing authority for all 
data centers within its jurisdiction.  
 
With the projected growth of data centers’ energy use in the coming years, indirect water 
consumption and emissions are also expected to increase; however, future estimates of water 
consumption and emissions from electricity generation should consider potential future 
changes in the electricity mix. Decarbonization of the power sector is a critical requirement to 
achieving the U.S. 2050 net-zero GHG emissions goal (Grubert 2020), which may accelerate 
the retiring of fossil fuel-fired power plants by 2035 and transitioning to newer generation 
technologies like renewable energy and new firm clean power, such as scalable nuclear 
generation. Such decarbonization efforts will inevitably impact the future indirect water 
consumption and GHG emissions associated with data center electricity consumption. 
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6. Total Cryptocurrency 
Electricity Use  

 

Introduction 
Cryptocurrency mining represents a specialized 
form of computational infrastructure that differs 
substantially from traditional data centers. At its 
core, mining involves repeatedly generating 
cryptographic hashes—unique fixed-length 
codes derived from transaction data—until one 
meets specific criteria set by the network. The 
rate at which these hashes can be generated, 
measured in hashes per second, determines a 
miner's probability of earning rewards. While 
typical data centers process diverse workloads 
with varying computational demands, 
cryptocurrency mining facilities are single-
purpose installations dedicated solely to this 
hash generation process through specialized 
hardware. These application-specific integrated 
circuits (ASICs) operate continuously at 
maximum capacity, with their combined 
hashrate determining their share of network 
rewards. Miners use these chips to validate 
network transactions, receiving newly minted 
cryptocurrency as compensation when they 
successfully generate a qualifying hash. 
 
This analysis adopts a top-down methodology 
rather than the bottom-up approach employed 
elsewhere in this report, necessitated by two 
fundamental constraints. First, cryptocurrency 
mining operates on entirely different IT hardware 
than conventional data centers. As a result, our 
primary IT equipment shipment data—which 
forms the foundation of our bottom-up analyses 
for traditional data centers—does not capture 
the specialized ASICs used in mining 
operations. Second, the cryptocurrency mining 
industry's limited transparency makes 
comprehensive facility-level data collection 
impractical. 

 
1 https://ccaf.io/cbnsi/cbeci 

To address these constraints, we estimate U.S. 
energy consumption by analyzing the global 
Bitcoin network's total hashrate and hardware 
efficiency characteristics, then determine the 
U.S. share based on geographic distribution 
data. This methodology enables us to develop 
robust estimates despite data limitations, 
providing a continuous historical view of energy 
consumption patterns that can be validated 
against available reference points. 

Methodology 
This analysis estimates the historical energy 
consumption of Bitcoin mining activity in the U.S. 
by combining publicly available data on global 
network hashrate, hardware efficiency, and the 
estimated U.S. share of the global hashrate. 
Hardware efficiency estimates are obtained from 
the Cambridge Bitcoin Electricity Consumption 
Index (CBECI) web portal,1 which provides lower 
bound, best-guess, and upper bound estimates 
of mining hardware efficiency in joules per 
terahash (J/TH). All CBECI parameters applied 
in this analysis are sourced from their 
$0.05/kWh cost scenario.  
 
The CBECI hardware efficiency estimates are 
based on a comprehensive analysis of over 100 
distinct Bitcoin ASIC models launched since 
2013. To better reflect real-world market 
conditions, the CBECI methodology limits 
hardware manufacturers to focus on the three 
major producers (Bitmain, MicroBT, and 
Canaan), which are estimated to have a 
combined market share exceeding 85%. This 
filter excludes “exotic” devices with minimal 
sales impact and is not applied to hardware 
released before July 2014. Additionally, a five-
year maximum economic lifetime is introduced 
for hardware to avoid overstating power demand 
by including nominally profitable but likely 
obsolete older hardware. The CBECI analysis 
also incorporates expert input to adjust 
manufacturer efficiency specifications to better 
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reflect real-world operating conditions and 
variation. 
 
The location of Bitcoin mining is another area of 
uncertainty. Historically, miners have sought 
inexpensive electricity and a permissive 
regulatory environment. In 2021, the Chinese 
government imposed a ban on crypto-mining. In 
order to estimate the energy footprint of U.S. 
crypto mining, it is necessary to estimate the 
share of global mining occurring in the United 
States. Geographic hashrate distribution data is 
sourced from the CBECI mining map, which 
provides monthly estimates of each country's 
share of the global hashrate. The CBECI mining 
map tracks Bitcoin's geographic hashrate 
distribution by collecting and aggregating IP 
address data from participating mining pools, 
which connect mining facility operators to pool 
servers, providing a sample that has historically 
represented 32–38% of total Bitcoin hashrate 
since the map's launch in September 2019. In 
this analysis, the U.S. share of global hashrate 
is assumed to be the mean of the monthly 
shares prior to May 2021 (5.98%) for months 
where the CBECI estimate is unavailable before 
that date. For missing months after May 2021, 
the mean of post-China-ban shares is used 
(34.82%). These pre- and post-ban U.S. 
hashrates share parameters that can be 
adjusted as needed. Lack of transparency in 
mining location remains a significant source of 
uncertainty in estimating cryptocurrency carbon 
emissions (de Vries et al. 2022). 
Based on this geographic share and global 
hashrate, we estimate the monthly hashrate in 
the United States. The monthly U.S. hashrate is 
then converted to an estimated monthly 
information technology (IT) energy consumption 
in terawatt-hours (TWh) using the CBECI 
hardware efficiency values. To account for the 
total network energy consumption, upper and 
lower bound estimates are calculated based on 
assumed power usage effectiveness (PUE) 
ratios of mining facilities. These estimates are 
obtained by multiplying the IT hardware energy 
consumption by PUE ratios of 1.1 and 1.2. 
These PUE assumptions align with analysis 
from Siddik, Amaya, and Marston (2023), who 

found typical PUE values for mining operations 
range from 1.05 to 1.20. For lower bounding 
scenarios, hardware is assumed to be only the 
most efficient models, operating with the lowest 
PUE. For upper bounding scenarios, the CBECI 
profitability threshold and upper bound PUE are 
used.  
 
The CBECI best-guess estimate assumes that 
miners use a weighted basket of profitable 
hardware, with the prevalence of each model 
depending on its deployment date. The 
profitability threshold is determined by the 
assumed electricity price. Hardware is assigned 
a weight between 0 and 1 based on the time 
elapsed since its estimated deployment, with 
newer devices receiving higher weights. A two-
month lag is assumed between hardware 
release and deployment. This approach aligns 
with Lei, Masanet, and Koomey (2021), who 
emphasize the importance of using time-period 
appropriate technology data given how rapidly 
mining hardware evolves. The weighted average 
efficiency of the hardware basket is then used to 
calculate the network power demand and 
electricity consumption, assuming a PUE of 1.10 
for all facilities. These estimates were updated 
(Messina 2023) in response to a novel method 
of hardware composition estimation developed 
by Helmy et al. (2023). 
 
The U.S. Energy Information Administration 
(EIA) recently conducted a comprehensive 
assessment of cryptocurrency mining's 
electricity consumption, employing both top-
down and bottom-up approaches (Morey, 
McGrath, and Minato 2024). Their top-down 
analysis utilized CBECI data to estimate U.S. 
mining's share of global activity, while their 
bottom-up approach identified 137 mining 
facilities across 21 states, with detailed power 
capacity data available for 101 of these sites. By 
assuming an 80% utilization rate for their 
documented 10,275 MW of mining capacity, the 
EIA estimated annual electricity consumption of 
approximately 70 TWh for 2023. The bottom-up 
estimate from the EIA is shown alongside our 
estimates of U.S. annual mining energy use in 
the following plot, providing an independent 
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point of calibration for our methodology. 
 

 
Figure 6.1.  Annual energy consumption estimates for U.S. Bitcoin mining from 2016 to 2024.  
The graph presents three CBECI-based estimates (best estimate, lower bound, and upper bound) showing the 
growth in energy usage over time. The EIA's 2023 bottom-up estimate of 70 TWh (marked with an X) falls between 
CBECI's best estimate and upper bound projections, providing independent validation of the estimation 
methodology. 
 
 
While our approach aims to more realistically 
represent the hardware mix and its evolution 
over time compared to a simple equally 
weighted average, it has some limitations. The 
weighting scheme is based on assumed 
average hardware lifetimes and depreciation 
schedules rather than direct data on the actual 
hardware in use. The two-month deployment lag 
and 1.10 PUE are also generalizations that may 
not capture the full diversity of miner behavior 
and facility efficiency. Finally, the CBECI 
methodology relies solely on public data and 
does not incorporate direct input from miners on 
their installed hardware base, though it does use 
expert judgment to adjust device efficiency 
assumptions.  
 
Our analysis solely considers Bitcoin mining 
related energy use for several reasons. First, 

Bitcoin accounts for the vast majority of proof-of-
work-based cryptocurrency mining activity. 
Second, cryptocurrencies based on alternative 
consensus mechanisms like proof-of-stake use 
dramatically less energy (OSTP 2022). Based 
on current market dynamics and the 
technological underpinnings of these digital 
assets, our assessment is that Bitcoin accounts 
for the overwhelming majority of cryptocurrency-
related energy use in the United States 
(McDonald 2022). 
 
Focusing on Bitcoin allows for a more accurate 
and targeted analysis of the largest contributor 
to mining energy consumption. However, this 
methodology could be extended to other proof-
of-work cryptocurrencies if they gain significant 
adoption and there is sufficient data on their 
network hashrates, hardware efficiency, and 
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geographic distribution of mining activity 
becomes available. 
 
While this methodology provides a data-driven 
approach to estimate bitcoin mining energy 
consumption under a range of plausible 
assumptions, it could be further improved by 
incorporating direct data from mining industry 
participants. Granular information from Bitcoin 
miners on their specific hardware types, 
efficiencies, facility PUE ratios, and capacity 
utilization would enable more precise estimates. 
 
Such industry data could include: 

1. Detailed inventories of ASIC models used, 
their rated efficiencies, and deployment 
volumes over time 

2. Measured PUE ratios and environmental 
operating conditions (e.g., ambient 
temperature, cooling setup) of mining 
facilities 

3. Capacity utilization rates and hashrate 
contribution of different facilities and 
hardware types 

4. Retirement and replacement rates of older 
hardware models 

5. Energy procurement and consumption 
data from utility bills or smart meter 
readings. 

 
 
 

Incorporating this type of direct, verifiable data 
from mining operations would greatly improve 
the accuracy and granularity of energy 
consumption estimates. It would enable more 
realistic modeling of the evolution of the mining 
hardware mix, efficiency gains from new ASICs 
and facility upgrades, and geographic shifts in 
mining activity. Engaging mining industry 
participants to voluntarily share anonymized, 
aggregate data would be a valuable extension of 
this analysis. 
 
To project future energy consumption, we 
developed linear regression models linking 
Bitcoin price to U.S. mining energy consumption 
across the CBECI hardware efficiency 
scenarios. The models demonstrate strong 
statistical relationships between price and 
energy consumption, with R-squared values of 
0.8251 for the lower bound estimate and 0.9011 
for the upper bound estimate. These high 
correlations, each with a high level of statistical 
significance (p>.0001), are consistent with 
theoretical predictions (Helmy et al. 2023; OSTP 
2022; Messina 2023), as mining profitability—
and thus energy consumption—should closely 
track Bitcoin price. Time series for Bitcoin price, 
and our lower bound, best guess, and upper 
bound estimates are shown below in Figure 6.2.  
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Figure 6.2.  Relationship between Bitcoin's price and estimated energy consumption from 2020 to 
2024, normalized to January 2016 price and best estimate energy use.  
The graph shows three energy consumption scenarios (lower bound, best estimate, and upper bound) plotted against 
Bitcoin price movements. The upper bound estimate demonstrates the highest volatility, closely tracking price 
fluctuations, while the lower bound estimate shows more gradual growth. All metrics indicate substantial growth from 
baseline, with energy consumption estimates ranging from roughly 90x to 250x of their 2016 levels by 2024. Data 
sourced from the Cambridge Bitcoin Electricity Consumption Index (CBECI) and CoinGecko. 
 
 
Using our best-guess hardware efficiency 
scenario, the model shows that price variations 
explain approximately 86% of the observed 
changes in energy consumption (R² = 0.86). The 
model coefficient indicates that for every $1,000 
increase in Bitcoin price, U.S. mining energy 
consumption increases by approximately 0.058 
TWh per month. While direct measurement of 
mining energy consumption would be preferable, 
the strong theoretical foundation and high 
statistical significance of the price-consumption 
relationship make this approach the most 
reliable option given currently available data. 
 
To construct future scenarios, we analyzed 
historical Bitcoin price movements over rolling 
four-year periods to understand typical growth 
patterns. Based on this analysis, we modeled 

two scenarios: a conservative case where 
Bitcoin price doubles by the end of 2028, and an 
aggressive case where price increases five-fold 
over the same period. While actual Bitcoin 
prices exhibit significant short-term volatility, we 
model price growth as a smooth exponential 
increase to focus on long-term trends rather 
than short-term fluctuations. These price 
trajectories were then input into our regression 
model to estimate corresponding energy 
consumption under the CBECI's lower bound, 
best-guess, and upper bound hardware 
efficiency assumptions.  
 
This approach was informed by Papp et al. 
(2023), who established a clear relationship 
between Bitcoin price movements and carbon 
emissions, finding a long-run price elasticity of 
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0.33–0.40 and a larger short-run elasticity of 
0.69–-0.71. Rather than assuming a carbon 
intensity, we instead derived a relationship 
between modeled energy use and price, 
implicitly imputing hardware efficiency 
improvements, which allowed for more robust 
estimates (Koomey and Masanet 2021). These 
methods allow us to bound future energy 

consumption estimates based on historically 
observed price relationships while 
acknowledging the inherent uncertainty in both 
price movements and the price-energy use 
relationship. Plots of these estimates for both 
the moderate and high growth scenarios are 
shown below.  

 

 
Figure 6.3.  Projected U.S. Bitcoin mining energy consumption under a moderate price growth 
scenario (2024–2028). 
Historical data (solid lines) shows actual energy consumption estimates from 2017–2024, while projected values 
(dotted lines) assume Bitcoin price increases five-fold by 2028. The three trajectories represent different hardware 
efficiency scenarios: lower bound (most efficient hardware, optimal PUE), median (mixed hardware efficiency, 
average PUE), and upper bound (profitability threshold hardware, higher PUE). 
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Figure 6.4.  Projected U.S. Bitcoin mining energy consumption under an aggressive price growth 
scenario (2024–2028). 
Historical data (solid lines) shows actual energy consumption estimates from 2017–2024, while projected values 
(dotted lines) assume Bitcoin price increases five-fold by 2028. The three trajectories represent different hardware 
efficiency scenarios: lower bound (most efficient hardware, optimal PUE), median (mixed hardware efficiency, 
average PUE), and upper bound (profitability threshold hardware, higher PUE). 
 
 
As an input into our overall model of data center 
energy use, we selected the CBECI best-guess 
based estimate. Without more detailed data on 
the underlying hardware composition, we view 
this approach as the most robust estimate of 
mining hardware efficiency. That the 
International Energy Agency’s bottom-up 
estimate for 2023 was much closer to the upper 
bound suggests that this may, in fact, be a 
conservative estimate hardware composition 
(International Energy Agency 2024). Future data 
collection efforts to better characterize the actual 
mining hardware in operation would help reduce 
this uncertainty. 
 

The insights from this work highlight the urgent 
need for enhanced monitoring and reporting 
frameworks in the cryptocurrency mining sector. 
While our methodology provides a reliable 
estimation approach, the industry's opacity 
continues to hamper precise forecasting and 
planning. As digital assets become increasingly 
mainstream, policymakers and utilities must 
develop more sophisticated tools for tracking 
and managing mining-related energy demand to 
ensure grid stability and meet decarbonization 
goals. 
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7. Conclusions, Limitations, and Future Work  
The 2024 updates to the Berkeley Lab data center energy use model described in this report 
support previous analyses showing near-constant U.S. data center energy use in the early to 
mid-2010s, despite substantial growth in data center services. The efficiency strategies that 
allowed the industry to avoid increased energy needs during this period included improved 
cooling and power delivery efficiency, increased server utilization rates, increased 
computational efficiencies, and reduced server idle power, much of which were enabled by a 
shift toward larger, cloud-based, hyperscale data centers. This report shows that the 
emergence of accelerated servers became a significant enough portion of the data center 
server stock to begin increasing total data center energy use again by 2017, driving a new 
trend that led to an approximate tripling of energy use from 2014 to 2023. Future energy 
demand scenarios indicate further growth based on a range of possible equipment shipments 
and operational practices of accelerated computing to support Artificial Intelligence (AI) 
services.  
 
These insights are based on a “bottom-up” energy use model that requires inputs and 
assumptions developed from limited publicly available data, proprietary market analyst data, 
and review by industry representatives and stakeholders. The lack of direct energy data 
available in a sector with rapidly evolving technologies limits the analysis in this report, 
especially when trying to understand and estimate future energy demand scenarios. Some key 
limitations and opportunities for future research to address them are outlined below. 

Benchmarking Initiatives  
The Berkeley Lab data center energy use model is based on representative equipment, 
equipment configurations, and operational practices that may change over time and can 
increase the underlying uncertainty in the modeling results. Providing an empirically sound 
characterization of U.S. data center energy and water use and identifying opportunities for data 
center optimization require ongoing data collection and reporting on facility size, energy and 
water consumption, power source, cooling system types, backup power system information, 
and installed IT equipment characteristics, along with other available characteristics. This 
information can be used to provide broader insights into industry trends, estimates of 
energy/water/carbon impact, improved or new efficiency metrics, and updates on efficiency 
strategies. This information can also facilitate greater data and knowledge sharing, which can 
improve data center modeling by the broader energy analysis community. Approaches include 
the following:  
 
More frequent data center energy use reports. This 2024 Data Center Energy Use Report is the 
third such report released over nearly 20 years. Providing reports on an annual or biannual 
basis would allow energy modelers to more frequently update inputs and assumptions, 
continuously improve its modeling structure and capabilities, and work with stakeholders to 
validate those inputs, ultimately providing increased accurately and flexibility to match changes 
in the data center sector. In short, the sector and its energy demands are quickly evolving, and 
a tighter feedback loop is needed to support timely market insights and forecasts so 
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policymakers and market actors can anticipate impacts and make balanced, informed 
decisions. 
 
Energy/resource data repository. The lack of primary performance and utilization data indicates 
that much greater transparency is needed around data centers. Very few companies report 
actual data center electricity use and virtually none report it in context of IT characteristics such 
as compute capacities, average system configurations, and workload types. These details are 
often considered proprietary, but novel data sharing arrangements could address these 
concerns by developing a repository for companies to provide energy use data that would be 
anonymized and aggregated for public release through coordination with entities that collect 
and anonymize data for other industries.  
 
Metric development. Comparing and benchmarking the efficiency of data centers is hampered 
by the lack of sufficient metrics. PUE only measures the efficiency of the infrastructure 
supporting a data center and indicates nothing about the efficiency of the IT equipment itself. 
Other metrics, such as ITUE, are meant to capture IT equipment efficiency but have seen little 
uptake and may need expansion to accommodate accelerated hardware. Computation 
efficiency alone provides little insight into energy efficiency opportunities without understanding 
how those computations are applied to different workloads. While the need for new metrics is a 
known challenge, data center operators, standards organizations, and researchers should 
continue to work together to develop a set of energy and water performance metrics specific to 
different workloads or service segments to enable more accurate comparisons, benchmark 
setting, and targets. 
 
Data center equipment testbed. Direct IT equipment measurements by working with 
universities, national labs, as well as industry partners would allow for the collection of 
operational characteristics based on physical attributes (e.g., server cores, DRAM, network 
ports, storage, etc.) rather than relying on overall power averages from the data vendors. 
Measured data could then be linked to feed simulation models of energy that could be applied 
to a wider combination of physical characteristics and provide a stronger relationship between 
rated power and operational power, idle power, and power variation at different utilization 
levels.  

Utility/ISO Collaborations 
In this report, the data center carbon and water impacts associated with different electricity 
sources are based on regional electricity sources of the utility grid. While U.S. data centers are 
increasingly engaging in onsite electricity generation, power purchase agreements, and trade in 
various carbon credits, the lack of transparency around the details of these activities for all U.S. 
data center operators prevents including in the overall analysis. Along with limiting the scope of 
this report, this lack of transparency highlights that data center growth is occurring with little 
consideration for how best to integrate these emergent loads with the expansion of electricity 
generation/transmission or for broader community development. Research and technical 
support at the intersection between utilities/ISOs and data center owners/operators could guide 
where and how data centers are sited, how renewable contracts are developed, and coordinate 
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efforts at improving efficiency and load flexibility. Approaches include the following:  
 
Balancing risk and cost allocation needs through smart contracts. Acceleration of data center 
deployments is likely to require substantial investment in new or expanded power infrastructure. 
The magnitude of that investment and how much is on the customer vs. grid side of the meter 
is highly uncertain. If investments are made on the grid side but the expected load fails to show 
up, ratepayers could be unduly burdened by cost recovery. Some utilities are requesting 
regulators to approve rate structures that transfer all this risk to data centers, with the potential 
consequence of slowing down deployment. Research from energy economists, data center 
modelers, grid modelers, as well as others is needed to identify key risks for existing 
customers, data centers, and utilities, explore existing contractual arrangements, and propose 
novel methods for risk-sharing and cost recovery  
 
Demand bidding as a coordination mechanism. Wholesale markets have developed methods to 
incentivize long term deployment of supply side resources for adequacy. Research could 
explore “demand bidding” mechanisms where large loads would bid their future demand needs, 
becoming part of a demand-side interconnection queue. 
 
Support co-investment in new firm clean power. The data center industry has shown interest 
and leadership in implementing real-time renewable energy and zero carbon power, including 
battery storage resources. Future research efforts should include working with utilities and data 
center companies to develop strategies that can quantify the potential costs and benefits of 
investing in large-scale, customer-driven renewable energy projects and new firm clean power, 
including scalable nuclear generation. 
 
Quantifying the elasticity of cloud and AI services. Anecdotal evidence suggests recent 
increases in the cost of cloud services, including fees for services such as virtualization, are 
causing some customers to rethink their cloud migration plans and even consider repatriating 
workloads to legacy data centers. The power demands for AI and cloud services are tied to the 
cost and perceived value of those services, but this relationship is not well understood. 
Research is needed to understand the price sensitivity of these services as a barometer for the 
magnitude and timing of related power demands.  

Technology Development 
In previous reports, the Berkeley Lab data center energy use model has been used to generate 
various efficiency scenarios for traditional IT equipment and data center infrastructure. In the 
current report, the use of accelerated IT equipment for AI applications is at a nascent stage 
where industry practices are still developing, and a broader array of efficiency strategies need 
to be identified. At the same time, advanced cooling technologies and strategies are being 
developed and deployed to provide much higher cooling capacities compared to the past. Since 
the emergence of accelerated IT equipment for AI applications is driving future energy growth, 
the future energy use in this report is presented as a range based on possible changes in 
operational practices and the rate of growth in the installed base for accelerated servers, as 
well as the cooling technologies that may be deployed for heat removal. This lack of AI-specific 
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efficiency scenarios in the current report highlights that AI is changing data center requirements 
in ways that call for new research and development initiatives to unlock the next generation of 
efficiency measures. These strategies could include efficient software algorithms, application 
specific chips, new cooling system designs, and network configurations. Approaches include 
the following:  
 
Demand flexibility capability studies. Research is needed to identify opportunities for data 
centers to exercise load flexibility to limit their impacts on the grid and lower their carbon 
footprint. Various data center computing workloads could be identified and parameterized by 
their service requirements, and IT equipment utilization levels could be better understood. Data 
center energy models must be expanded to include the spatial and temporal resolution needed 
to assess load flexibility. Additionally, the costs and benefits of load flexibility to data center 
operators should be understood to identify incentive structures for realizing flexibility potential.  
 
Monitoring protocol and validation of the data center tools. Collection of detailed performance 
and operational data from well-instrumented data centers could include advanced metering 
infrastructure at the hardware and rack levels and support the expansion and validation of 
building energy and system modeling software to include the physics and dynamics of 
emerging technologies, such as advanced liquid cooling designs and new computing hardware. 
 
Efficient software and algorithms. Future efficiency scenarios should include broad classes of 
energy efficient algorithms (Patterson et al. 2022; Leiserson et al. 2020), including 
communication avoiding algorithms, reduced precision and mixed-precision algorithms, and 
randomized algorithms such as Hardamard matrix methods. 
 
Emerging technologies. Innovation occurs constantly in the IT sector but can be hard to capture 
in future scenarios without credible data on the technical, energy, and economic performance 
of emerging technologies. Moving forward, advances in processor designs, new materials, 
system integration approaches, and other data center aspects could provide substantial 
efficiency benefits. Data standards and collection initiatives that can help provide public 
datasets of key characteristics necessary for confident modeling (e.g., adoption readiness 
levels, technology characteristics, energy requirements, and costs) would help energy 
modelers consider emerging technologies in future scenarios. 

Beyond 2028 
While significant energy efficiency improvements in data center design and operation have 
occurred over the past decade, the expansion of data center services into areas that require 
new types of hardware, such as AI and cryptocurrency, has ended the era of generally flat data 
center energy use. Most notably the recent rapid growth in accelerated servers has caused 
current total data center energy demand to more than double between 2017 and 2023, and 
continued growth in the use of accelerated servers for AI services could cause further 
substantial increases by the end of this decade. This surge in energy demand highlights the 
need for future research to understand this rapidly changing industry and identify new efficiency 
strategies to minimize the environmental impacts of this growing and increasingly significant 
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portion of our overall economy.  
 
Furthermore, when looking beyond 2028, the current surge in data center electricity demand 
should be put in the context of the much larger electricity demand expected over the next few 
decades from a combination of electric vehicle adoption, onshoring of manufacturing, hydrogen 
utilization, and the electrification of industry and buildings. Research initiatives are needed not 
just to identify strategies to meet data centers’ future energy needs but also to help 
stakeholders use this relatively near-term electricity demand for data centers as an opportunity 
to develop the leadership and a foundation for an economy-wide electricity infrastructure 
expansion.  
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