“As technology has become amazing and advanced, we increasingly make things more complicated, meaning more elements ... which makes it more difficult to manage at end of [the product’s] life. We sometimes make the joke that you carry the periodic table in your pocket.”

Professor Elsa Olivetti, MIT Department of Materials Science & Engineering

TILclimate podcast: Today I Learned About Materials

The Periodic Table in Your Pocket

The average smartphone contains more than 30 separate chemical elements (more than a quarter of the periodic table) in many combinations.\(^1\) While this makes the device the technological wonder that it is, it also makes it difficult to separate those elements for recycling after a user upgrades to a new phone. US e-waste (cell phones, computers, wearables, etc.) is often sent overseas to be recycled. There are many materials in e-waste that then affect human and environmental health in these countries.

What if we could better separate and handle the materials in our e-waste? According to the United Nations (UN), “industrial and consumer products containing [chemical elements] have often been regarded as waste material rather than as ‘surface mines’ waiting to be exploited. This is a nearsighted and unfortunate view... [W]e limit our technological future by using these resources once and then discarding them through neglect, poor product design, or poor planning.”\(^2\)

What is Recyclable, What is Recycled?

On the next page, find infographics that describe some of the elements that go into a smartphone, and the average recycling rates for those elements worldwide.

1. What do you notice? Does anything surprise you?
2. We often focus on recycling as an eco-friendly action and forget that ‘reduce’ and ‘reuse’ come before ‘recycle.’ In the case of the materials in electronic devices, what would ‘reduce’ and ‘reuse’ look like?
3. What did the UN report mean that products containing these elements could be seen as ‘surface mines’? Research programs or organizations that are working to increase the safe harvesting of e-waste materials.
4. Engineers and designers are working to develop electronic devices that are more fully recyclable, so that their materials can be reused again and again. Research one of these projects – how are they thinking about materials use?

\(^1\) The Chemical Elements of a Smartphone https://www.compoundchem.com/2014/02/19/the-chemical-elements-of-a-smartphone/

Today I Learned About Materials

Elements of a Smartphone

Screen
- Indium tin oxide is a mixture of indium oxide and tin oxide, used in a transparent film on the screen that conducts electricity. This allows the screen to function as a touch screen.
- The glass used on the majority of smartphones is an aluminosilicate glass, composed of a mix of aluminium (Al₂O₃) and silica (SiO₂). This glass also contains potassium ions, which help to strengthen it.
- A variety of Rare Earth Elements compounds are used in small quantities to produce the colours in the smartphone’s screen. Some compounds are also used to reduce UV light penetration into the phone.

Electronics
- Copper is used for wiring in the phone, whilst copper, gold, and silver are the major metals from which microelectrical components are fashioned. Tantalum is the major component of micro-capacitors.
- Nickel is used in the microphone as well as for other electrical connections. Alloys including the elements praseodymium, gadolinium, and neodymium are used in the magnets in the speaker and microphone. Neodymium, terbium, and dysprosium are used in the vibration units.
- Pure silicon is used to manufacture the chip in the phone. It is solidified to produce non-conducting regions, then other elements are added in order to allow the chip to conduct electricity.
- Tin & lead are used to solder electronics in the phone. Nickel-lead-free solders use a mix of tin, copper and silver.

Battery
- The majority of phones use lithium ion batteries, which are composed of lithium cobalt oxide as a positive electrode and graphite (carbon) as the negative electrode. Some batteries use other metals, such as manganese, in place of cobalt. The battery’s casing is made of aluminium.

Casing
- Magnesium compounds are alloyed to make some phone cases, whilst many are made of plastics. Plastics will also include flame retardant compounds, some of which contain bromine, whilst nickel can be included to reduce electromagnetic interference.

Recycling Rates of Smartphone Metals

Screen
- Touch: Indium Tin Oxide
 - Used in a transparent film on the phone’s screen that conducts electricity. This allows the screen to function as a touch screen. This is the major use of indium.
- Glass: Alumina & Silica
 - On most phones, the glass is an aluminosilicate glass, a mix of aluminium oxide & silicon dioxide. It also contains potassium ions which help strengthen it.
- Colours: Rare Earth Elements
 - A variety of rare earth metal-containing compounds are used to help produce the colours in a smartphone’s screen. Some of these compounds are also used to help reduce light penetration into the phone. Many of these rare earths occur commonly in the Earth’s crust, but often at levels too low to be economically extracted.

Electronics
- Wiring & Microelectronics
 - Copper is used for wiring, and for micro-electrical components along with gold and silver. Tantalum is the major component in micro-capacitors.
- Microphones & Vibrations
 - Nickel is used in the microphone and for electrical connections. Rare earth element alloys are used in magnets in the speaker and microphone, and the vibration unit.

Connecting Electronics
- Tin & lead were used in older solders; lead-free solders use a mix of tin, copper & silver.

Battery
- Most phones use lithium ion batteries, composed of lithium oxides and graphite (carbon) as the negative electrode. Sometimes, other oxides and graphite, as well as manganese, are used in place of cobalt. The battery casing is often made of aluminium.

Casing
- Magnesium alloy is used to make some phone cases, whilst many are made of plastics, which are carbon-based. Plastics will also include flame retardant compounds, some of which contain bromine, whilst nickel can be included to reduce electromagnetic interference.
Today I Learned About Materials

Elements of a Smartphone

- **Battery**
 - The majority of phones use lithium-ion batteries, which are comprised of lithium carbonate as a positive electrode and graphite carbon as the negative electrode. The battery casing is made of aluminum.
 - Magnesium compounds are alloyed to reduce electromagnetic interference.

- **Casing**
 - Sn & Pb are used in solder paste, and free solvents use a mix of tin, copper, and silver.

- **Screen**
 - Indium tin oxide is a mixture of indium oxide and tin oxide, used in transparent metal films to produce the colors in the smartphone's display. Some compounds are also used to reduce UV penetration into the screen.
 - A variety of rare earth elements, such as manganese, are used in place of cobalt.

- **Electronics**
 - Copper is used for wiring in the phone, whilst copper, gold, and silver are the major metals used in the electronics.
 - Nickel is used in the microphone as well as for other electrical connections. Alloys can be used to produce non-conducting regions.

Elements Colour Key
- Alkaline Earth Metals
- Transition Metals
- Group 13
- Group 14
- Group 15
- Group 16
- Halogen
- Lanthanides
- Actinides

Environmental Solutions Initiative

(compoundinterest)
Today I Learned About Materials
“The majority of [CO$_2$ emissions from materials and manufacturing] is steel and cement. Aluminum and paper and plastic are all about five to ten percent... Focusing on innovations in steel and cement are always useful.”

Professor Elsa Olivetti, MIT Department of Materials Science & Engineering

TILclimate podcast: Today I Learned About Materials

Steel

If a new building is going up in your neighborhood (especially a very tall one) chances are the structure is made of steel. Steel is used in cars, bridges, and buildings all over the world. Steel is iron with other added elements to improve its strength and flexibility.

Steel begins its life as iron ore, mined out of the ground. From there, it is processed, melted, mixed, and reformed into the many shapes and types of steel needed. Almost every step of the steel process requires large amounts of heat. Most steel plants use coal or other fossil fuels as their primary heat source. Burning fossil fuels releases carbon dioxide (CO$_2$).

Cement and Concrete

Walk down a sidewalk. Look at the foundation (basement) of a building. Concrete is all around us – it is the second-most used material on the planet, after water.¹ We rarely think about how it is made, or what it is made of.

As Prof. Olivetti mentioned in the podcast episode, concrete is made of a mixture of water, sand and gravel, chemical additives, and cement. Cement is the glue that holds the other materials together and gives the concrete its strength. Cement is like the flour, while concrete is like the bread that is made with the flour.

Most cement is made from heated limestone and is a major source of CO$_2$ around the world. Its production emits CO$_2$ in two main ways: As clinker forms in a heated kiln, CO$_2$ is released directly from the chemical reaction. To heat the kiln to the necessary 2600°F, most cement factories burn fossil fuels, which also release CO$_2$.

A Warming Planet

In the atmosphere, CO$_2$ acts like a blanket, trapping heat. This trapped heat is warming our Earth, ocean, and air and causing dramatic changes to weather and climate patterns all over the world.

Globally, cement accounts for around 7% of all heat-trapping gas emissions¹ while steel emits another 7% or more².

¹ MIT Explainer: Concrete https://climate-dev.mit.edu/explainers/concrete

Images from Pixabay
Today I Learned About Materials

Each One, Teach One
Each member of your group will choose one of the following articles about an innovation that is reducing the CO\textsubscript{2} emissions of steel or concrete.

As you read:
1. In your own words, summarize the innovation – is a new manufacturing process, material, method of construction, energy source, something else?
2. What do you find the most interesting about this innovation?
3. How does this innovation reduce CO\textsubscript{2} emissions?

After you read:
1. Each member of the group teaches the others about their article.
2. Discuss similarities and differences among these innovations.
3. Imagine your group was in charge of building a new youth center in your community. One key goal is for the building to meet your community’s needs while emitting as little CO\textsubscript{2} as possible in its materials, construction, and use. Which of these new innovations might you use in constructing the building? What other methods, materials, or ideas have you heard about that could decrease the CO\textsubscript{2} emissions of the building?
4. Some innovations are ‘multisolving’ – that is, they solve more than one challenge. How do some of the solutions you learned about solve multiple problems at once?
Today I Learned About Materials

Innovations: Steel

One order of steel; hold the greenhouse gases https://news.mit.edu/2013/steel-without-greenhouse-gas-emissions-0508

Innovations: Cement

“[W]hat’s tricky about any of these conversations around CO₂ or materials use is that the numbers are huge. [H]ow do you relate them to anything that feels more concrete to us?”

Professor Elsa Olivetti, MIT Department of Materials Science & Engineering

TILclimate podcast: Today I Learned About Materials

Numbers are Hard: Science Communication

The human brain finds very large numbers difficult to comprehend. We can easily imagine 10 of something and can probably roughly estimate that we are looking at 100 of something. Once numbers get much larger than that, however, they start to be difficult to imagine, compare, and understand.

In the modern world, we are often faced with extremely large numbers: trillions of dollars in government budgets, billions of dollars owned by single individuals, millions of people in one city. When discussing climate change, we hear about millions of metric tons of carbon dioxide emissions – but what is a metric ton, and what is a million?

People who make big numbers make sense in an everyday context often use some of the following techniques:

Data Communication Tips

Make it Smaller: For example, if a building is going to cost $10 million to build, and will take two years to build, that is $416,666 per month. While this is still a large number, it is closer to the average cost of a house in the US.

Change the Unit: The Mariana Trench (the deepest known part of the ocean) is over 36,000 feet deep. Most people cannot imagine this. Convert it to 6.8 miles and it becomes more understandable.

Divide it Up: It may be too much to imagine one million people – but how many times would you need to fill your local football stadium to fit one million? It may be easier to imagine 15 football stadiums of people.

Convert to Time: Another way to imagine one million people is in interactions. If you spoke to each person for one minute, eight hours a day, every day, it would take 5.7 years to meet each person.

Visualize It: Numbers are often easier to compare if they are represented in a graph, chart, graphics, or video. However, it is important that your graphics are accurate in terms of area or length.
Today I Learned About Materials

US Heat-Trapping Gas Emissions from Industry, 2019
- Fossil fuel combustion: 52%
- Natural gas & petroleum systems: 19.1%
- Other industrial categories: 9.7%
- Chemical production & use: 4.7%
- Mineral products: 4.2%
- Coal mining: 3.5%
- Production & use of fluorinated gases: 3.1%
- Metal production: 3%

Data Communication Practice
Take one or more of the following data points from the US Environmental Protection Agency (EPA) Reframe it to make more sense to the general public, using one or more of the tips on the previous page. All data points are US measurements from 2019, listed in million metric tons (mmt) of carbon dioxide equivalents (CO₂e – a method of combining data for all heat-trapping gases.)

Total: 6,588mmt
Total industrial use: 1,504.83mmt
Industrial fossil fuel use: 782.82mmt
Iron and steel production: 41.32mmt
Cement production: 40.90mmt
Lime production: 12.11mmt

For more data points, or data from other years, visit https://cfpub.epa.gov/ghgdata/inventoryexplorer/index.html
To convert metric tons of CO₂ to passenger cars, homes, smartphones, and more, visit https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator

Questions
1. Why do you think it is so hard to talk about very large numbers?
2. Many science communicators focus on talking about impacts and solutions instead of showing graphs, figures, and numbers. How could you reframe the fact(s) you chose above to remove the numbers altogether? What is your goal in sharing this information?
3. Have you seen scientific data presented in a way that resonated with you? What did you like about how the communicator(s) chose to present the material?

All data from EPA “Greenhouse Gas Inventory Data Explorer” https://cfpub.epa.gov/ghgdata/inventoryexplorer/index.html