Carbon Capture's Role in Deep Decarbonization

MIT Climate Action Symposium

Howard Herzog February 25, 2020

Carbon Dioxide Capture and Storage (CCS)

- CCS can eliminate or offset difficult-to-eliminate emissions by:
 - CCS at industrial plants
 - Production of "blue" hydrogen (steam methane reforming (SMR) with CCS)
 - Creating offsets through
 - » Direct Air Capture (DAC)
 - » Bioenergy with CCS (BECCS)

Industry

- Seven largest industries, including cement, iron & steel, and chemicals, account for ~20% of global CO₂ emissions
 - Predicted growth of 35% by 2050
- Significant percentage of CO₂ emissions from process, not energy
 - $CaCO_3 \rightarrow CaO + CO_2$
 - $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$
- Limited options beyond CCS
 - Carbon-free fuels (e.g., hydrogen) and/or electrification
 - Alternative processes

- Least cost pathway for hydrogen production today is Steam Methane Reforming (SMR) of natural gas
 - Cost very sensitive to natural gas price
 - In US today, electrolytic hydrogen costs ~4 times as much to produce as SMR hydrogen
- Least cost pathway to low-carbon hydrogen is SMR with CCS ("blue hydrogen")
 - Demonstrated at the million ton CO₂ per year level at Air Products (Port Arthur, TX) and Shell Quest (Alberta, Canada)

Air Products SMR w/CCS

Source: Air Products and Chemicals, Inc., http://prphotolibrary.airproducts.com/ Howard Herzog / MIT Energy Initiative

Direct Air Capture (DAC)

- DAC is a very seductive concept
- The question is not whether we can do it, but what is the cost
- I have been analyzing DAC for about 10 years and based on my analysis, I do not believe the lower cost numbers being floated today for DAC.
- My beliefs are detailed here:
 - House *et al.*, "Economic and Energetic Analysis of Capturing CO₂ from Ambient Air," *Proceedings of the National Academy of Sciences* 108, no.51 (December 2011). <u>http://sequestration.mit.edu/pdf/1012253108full.pdf</u>

Absorber Size Coal-Fired Flue Gas vs. DAC

Climeworks DAC unit 900 tCO₂/year. Petra Nova capture plant 1,600,000 tCO₂/year.

DAC Cross-Sectional Area 1 Mt/yr

BECCS

- Biomass removes CO₂ from the air no absorbers or adsorbers needed
- Biomass provides the energy required for CCS and produces electricity as a by-product
- Uses the same capture technology that has been demonstrated at coal-fired power plants
- Requires a sustainable supply of biomass

Model Results

- Biomass used: 30 EJ in 2050, 320 EJ in 2100
- Negative emissions: 21 GtCO₂ in 2100
- Impact on food prices: ~5% increase

Ecosystem impacts and social acceptability were not modeled and could limit deployment

Further Reading

Contact Information

Howard Herzog Senior Research Engineer

Massachusetts Institute of Technology (MIT) Energy Initiative Room E19-370L Cambridge, MA 02139

Phone: 617-253-0688 E-mail: hjherzog@mit.edu Web Site: sequestration.mit.edu